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Abstract—Several problems in modeling and control of
stochastically driven dynamical systems can be cast as
regularized semidefinite programs. We examine two such
representative problems and show that they can be for-
mulated in a similar manner. The first, in statistical model-
ing, seeks to reconcile observed statistics by suitably and
minimally perturbing prior dynamics. The second seeks to
optimally select a subset of available sensors and actua-
tors for control purposes. To address modeling and control
of large-scale systems, we develop a unified algorithmic
framework using proximal methods. Our customized algo-
rithms exploit problem structure and allow handling statis-
tical modeling, as well as sensor and actuator selection, for
substantially larger scales than what is amenable to current
general-purpose solvers. We establish linear convergence
of the proximal gradient algorithm, draw contrast between
the proposed proximal algorithms and the alternating di-
rection method of multipliers, and provide examples that
illustrate the merits and effectiveness of our framework.
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I. INTRODUCTION

CONVEX optimization has had tremendous impact on
many disciplines, including system identification and con-

trol design [1]–[7]. The forefront of research points to broaden-
ing the range of applications as well as sharpening the effective-
ness of algorithms in terms of speed and scalability. The present
article focuses on two representative control problems, statistical
control-oriented modeling, and sensor/actuator selection, that
are cast as convex programs. A range of modern applications re-
quire addressing these over increasingly large parameter spaces,
placing them outside the reach of standard solvers. The main
contribution of this article is to formulate such problems as regu-
larized semidefinite programs (SDPs) and to develop customized
optimization algorithms that scale favorably with size.

Modeling is often seen as an inverse problem, where a search
in parameter space aims to find a parsimonious representation
of data. For example, in the control-oriented modeling of fluid
flows, it is of interest to improve upon dynamical equations
arising from first-principles (e.g., linearized Navier–Stokes (NS)
equations), in order to accurately replicate observed statistical
features that are estimated from data. To this end, a perturbation
of the prior model can be seen as a feedback gain that results
in dynamical coupling between a suitable subset of parame-
ters [8]–[10]. On the flip side, active control of large-scale and
distributed systems requires judicious placement of sensors and
actuators, which again can be viewed as the selection of a suitable
feedback or Kalman gain. In either modeling or control, the
selection of such gain matrices must be guided by optimality
criteria as well as simplicity (low rank or sparse architecture).
We cast both types of problems as optimization problems that
utilize suitable convex surrogates to handle complexity. The use
of such surrogates is necessitated by the fact that searching over
all possible architectures is combinatorially prohibitive.

Applications that motivate our study require scalable algo-
rithms that can handle large-scale problems. While the optimiza-
tion problems that we formulate are SDP representable, e.g.,
for actuator selection, worst-case complexity of generic solvers
scales as the sixth power of the sum of the state dimension,
and the number of actuators. Thus, solvers that do not exploit
the problem structure cannot cope with the demands of such
large-scale applications. This necessitates the development of
customized algorithms that are pursued herein.

This article is organized as follows. In Section II, we
describe the modeling and control problems that we con-
sider, provide an overview of literature and the state-of-the-
art, and highlight the technical contribution of this article. In
Section III, we formulate the minimum energy covariance
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completion (control-oriented modeling) and sensor/actuator se-
lection (control) problems as nonsmooth SDPs. In Section IV,
we present a customized method of multipliers (MM) algorithm
for covariance completion. An essential ingredient of MM is
the proximal gradient (PG) method. We also use the PG method
for sensor/actuator selection and establish its convergence rate.
In Section V, we offer two motivating examples for actuator
selection and covariance completion and discuss computational
experiments. We conclude with a brief summary of the results
and future directions in Section VI.

II. MOTIVATING APPLICATIONS AND CONTRIBUTION

We consider dynamical systems with additive stochastic dis-
turbances. In the first instance, we are concerned with a modeling
problem where the statistics are not consistent with a prior
model that is available to us. In that case, we seek to modify
our model in a parsimonious manner (a sparse and structured
perturbation of the state matrix) so as to account for the partially
observed statistics. In the second instance, we are concerned
with the control of such stochastic dynamics via a collection
of judiciously placed sensors and actuators. Once again, the
architecture of the (now) control problem calls for the selection
of sparse matrix gains that effect control and estimation. These
problems are explained next.

A. Statistical Modeling and Covariance Completion

It is well established that the linearized NS equations driven
by stochastic excitation can account for qualitative [11]–[15] and
quantitative [9], [10] features of shear flows. The value of such
models has been to provide insights into the underlying physics
as well as to guide control design. A significant recent step in
this direction was to recognize [9] that colored-in-time excitation
can account for features of the flow field that white noise in
earlier literature cannot [16]. Furthermore, it has been pointed
out that the effect of colored-in-time excitation is equivalent to
white-in-time excitation together with a structural perturbation
of the system dynamics [8], [9]. Such structural perturbations
may reveal salient dynamical couplings between variables and,
thereby, enhance understanding of basic physics [9, Section 6.1];
see [10] for a review of covariance completion problems and its
relevance in stochastic dynamical modeling of turbulent flows.

These insights and reasoning motivate an optimal state-
feedback synthesis problem [17] to identify dynamical couplings
that bring consistency between the model and the observed
statistics. Model parsimony dictates a penalty on the complexity
of structural perturbations and leads to an optimization problem
that involves a composite cost function

f(X,K) + γ g(K) (1)

subject to stability of the system in Fig. 1. Here,X denotes a state
covariance matrix andK is a state-feedback matrix. The function
f(X,K) penalizes variance and control energy while g(K) is
a sparsity-promoting regularizer, which penalizes the number
of nonzero rows in K; sparsity in the rows of K amounts to a
reduced number of feedback couplings that modify the system
dynamics. In addition, state statistics may be partially known,
in which case a constraint Xij = Gij for (i, j) ∈ I is added,
where the entries of G represent known entries of X for indices
in I.

Fig. 1. Feedback connection of an LTI system with a static gain matrix
that is designed to account for the sampled steady-state covariance X.

The resulting minimum-control-energy covariance comple-
tion problem can be cast as an SDP which, for small-size
problems, is readily solvable using standard software. A class of
similar problems have been proposed in the context of stochastic
control [18]–[21] and of output covariance estimation [22],
[23] which, likewise and for small-size, are readily solvable by
standard software.

B. Sensor and Actuator Selection

The selection and proper placement of sensors/actuators im-
pacts the performance of closed-loop control systems; making
such a choice is a nontrivial task even for systems of modest
size. Previous work on actuator/sensor placement either relies
on heuristics or on greedy algorithms and convex relaxations.

The benefit of a particular sensors/actuator placement is
typically quantified by properties of the resulting observabil-
ity/controllability and the selection process is guided by indica-
tors of diminishing return in performance near optimality [24],
[25]. However, metrics on the performance of Kalman filters
and other control objectives have been shown to lack supermod-
ularity [26], [27], which hampers the effectiveness of greedy
approaches in sensor/actuator selection.

The literature on different approaches includes convex for-
mulations for sensor placement in problems with linear mea-
surements [28], maximizing the trace of the Fisher information
under constraints when dealing with correlated measurement
noise [29], and a variation of optimal experiment design for
placing measurement units in power networks [30]. Actuator
selection via genetic algorithms has also been explored [31].
Finally, a nonconvex formulation of the joint sensor and actuator
placement was advanced in [32] and [33] and was recently
applied to the linearized Ginzburg–Landau equation [34].

Herein, we cast our placement problem as one of optimally
selecting a subset of potential sensors or actuators which, in
a similar manner as our earlier modeling problem, involves
the minimization of a nonsmooth composite function as in (1).
More specifically, we utilize the sparsity-promoting framework
developed in [35]–[37] to enforce block-sparse structured ob-
server/feedback gains and select sensors/actuators.

The algorithms developed in [37] have been used for sensor
selection in target tracking [38] and in periodic sensor scheduling
in networks of dynamical systems [39]. However, they were
developed for general problems, without exploiting a certain
hidden convexity in sensor/actuator selection. Indeed, for the
design of row-sparse feedback gains, the authors of [40] intro-
duced a convex SDP reformulation of the problem formulated
in [37]. Inspired by [37], the authors of [41] extended the SDP
formulation toH2 andH∞ sensor/actuator placement problems
for discrete time linear time-invariant (LTI) systems. Their ap-
proach utilizes standard SDP-solvers with reweighted �1-norm
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regularizers. In the present article, we integrate several of these
ideas. In particular, we borrow group-sparsity regularizers from
statistics [42] and develop efficient customized proximal algo-
rithms for the resulting SDPs.

C. Main Contribution

In the present article, we highlight the structural similarity
between statistical modeling and sensor/actuator selection, and
develop a unified algorithmic framework for handling large-
scale problems. Proximal algorithms are utilized to address the
nondifferentiability of the sparsity-promoting term g(K) in the
objective function. We exploit the problem structure, implicitly
handle the stability constraint on state covariances and controller
gains by expressing one in terms of the other, and develop a
customized PG algorithm that scales with the third power of
the state-space dimension. We prove linear convergence for
the PG algorithm with fixed step-size and propose an adaptive
step-size selection method that can improve convergence. We
also discuss initialization techniques and stopping criteria for our
algorithms, and provide numerical experiments to demonstrate
the effectiveness of our approach relative to existing methods.

III. PROBLEM FORMULATION

Consider an LTI system with state-space representation

ẋ = Ax+B u+ d

y = C x (2)

where x(t) ∈ Cn is the state vector, y(t) ∈ Cp is the output,
u(t) ∈ Cm is the control input, and d(t) is a white stochas-
tic process with zero-mean and the covariance matrix V � 0,
E(d(t)d∗(τ)) = V δ(t− τ). Here, E is the expected value,B ∈
Cn×m is the input matrix with m ≤ n, C ∈ Cp×n is the output
matrix, and the pair (A,B) is controllable. The choice of the
state-space is motivated by spatially distributed systems where
the application of the spatial Fourier transform naturally leads
to complex-valued quantities in (2); e.g., see [43].

We consider two specific applications, one that relates sys-
tem identification and covariance completion, and another that
focuses on actuator selection in a control problem. Both can be
cast as the problem to select a stabilizing state-feedback control
law, u = −Kx, that utilizes few input degrees of freedom in the
sense that the matrix K has a large number of zero rows. At the
same time, the closed-loop system

ẋ = (A−BK)x+ d

shown in Fig. 1 is consistent with partially available state-
correlations and/or is optimal in a quadratic sense.

More specifically, if

X := lim
t→∞E (x(t)x∗(t))

denotes the stationary state-covariance of the controlled system,
the pertinent quadratic cost is

f(X,K) := trace (QX +K∗RKX)

= lim
t→∞E (x∗(t)Qx(t) + u∗(t)Ru(t)) (3)

whereas Q = Q∗ � 0 and R = R∗ � 0 specify penalties on
the state and control input, respectively. Both stability of the
feedback dynamics and consistency with the state covarianceX

reduce to an algebraic constraint on K and X , namely

(A−BK)X + X(A−BK)∗ + V = 0. (4)

Finally, the number of nonzero rows of K can be seen as the
number of active degrees of freedom of the input u = −Kx.
The choice of such a K, with few nonzero rows is sought via
minimization of a nonsmooth composite objective function in
Problem 1, where

g(K) :=

n∑

i=1

wi ‖e∗iK‖2 (5)

is a regularizing term that promotes row-sparsity of K [42], wi

are positive weights, and ei is the ith unit vector in Rm.
Problem 1: Minimize f(X,K) + γ g(K), subject to (4),

X � 0, and, possibly, constraints on the values of specified
entries of X , Xij = Gij for (i, j) ∈ I, where a set of pairs I
and the entries Gij are given.

In this problem, γ > 0 specifies the importance of sparsity,
and I specifies indices of available covariance data. A useful
variant of the constraint on the entries ofX , when, e.g., statistics
of output variables are estimated, can be expressed as

(CXC∗)ij = Gij for (i, j) ∈ I. (6)

We next explain how Problem 1 relates to the two aforemen-
tioned topics of covariance completion and actuator selection.

A. Covariance Completion and Model Consistency

In many problems, it is often the case that a model is provided
for a given process which, however, is inconsistent with new
data. In such instances, it is desirable to revise the dynamics
by a suitable perturbation to bring compatibility between model
and data. The data in our setting consist of statistics in the form
of a state covariance X for a linear model

ẋ = Ax+ d (7)

with white noise input d.
We postulate and deal with a further complication when the

data is incomplete. More specifically, we allow X to be only
partially known. Such an assumption is motivated by fluid flow
applications that rely on the linearized NS equations [9]. In this
area, both the numerical and experimental determination of all
entries ofX is often prohibitively expensive. Thus, the problem
to bring consistency between data and model can be cast in the
form of Problem 1, where we seek a completion of the missing
entries ofX along with a perturbationΔ := −BK of the system
dynamics (7), into

ẋ = (A+Δ)x+ d.

The assumed structure of Δ is without loss of generality, and
the choice ofB may incorporate added insights into the strength
and directionality of possible couplings between state variables.
It should be noted that a full-rank matrix B that allows the
perturbation signal Kx to manipulate all degrees of freedom
can lead to the complete cancellation of the original dynamics
A; see [8, Section III] for details. Then, when seeking a suitable
perturbation, it is also natural to impose a penalty on the average
quadratic size of signals Kx. This brings us into the setting
of Problem 1, where the choice of most suitable perturbation
is determined by the optimization criterion. Once again, the
row-sparsity promoting penalty g(K) impacts the choice of
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feedback couplings that need to be introduced to modify the
dynamical generator A [17].

B. Actuator Selection

As is well known, the unique optimal control law that
minimizes the steady-state variance (3) of system (2) is a
static state-feedback u = −Kx. The optimal gain K and the
corresponding state covariance X can be obtained by mini-
mizing f(X,K), over K ∈ Cm×n, and positive definite X =
X∗ ∈ Cn×n. The solution can also be obtained by solving
an algebraic Riccati equation arising from the KKT condi-
tions of this optimization problem. In general, K is popu-
lated by nonzero entries, implying that all “input channels”
(i.e., all entries of u) would be active. Since the columns
of B encode the effect of individual “input channels,” rep-
resenting the locations of actuators, a subselection that is af-
fected by the row-sparsity promoting regularizer in Problem 1,
amounts to actuator selection among available options. A dual
formulation can be cast to address sensor selection and can be
approached in a similar manner; see Appendix A.

C. Change of Variables and SDP Representation

The constraint X � 0 in Problem 1 allows for a standard
change of variables Y := KX to replace K in f(X,K) =
trace(QX +K∗RKX). This yields the function

f(X,Y ) = trace
(
QX + Y ∗RYX−1

)
(8)

which is jointly convex in (X,Y ). Further, the row-sparsity of
K is equivalent to the row-sparsity of Y [40]. This observation
leads to the convex reformulation of Problem 1 [incorporating
the more general version of constraints (6)] as follows.

Problem 2: Minimize f(X,Y ) + γ
∑

i wi‖e∗iY ‖2 over a
Hermitian matrix X ∈ Cn×n and Y ∈ Cm×n, subject to

AX +X A∗ −B Y − Y ∗B∗ + V = 0

(1− δ) [ (CXC∗) ◦ E −G ] = 0

X � 0

where

δ =

{
0, for covariance completion
1, for actuator selection.

The symbol ◦ denotes elementwise matrix multiplication, and
E is the structural identity matrix,

Eij =

{
1, if Gij is available
0, if Gij is unavailable.

As explained earlier, the matrices A, B, C, G, and V are
problem data. From the solution of Problem 2, the optimal
feedback gain matrix can be recovered as K = Y X−1. We
note that the optimization of f can be expressed as an SDP.
Specifically, the Schur complement can be used to characterize
the epigraph of trace(RYX−1Y ∗) via the convex constraint

[
W R1/2 Y

Y ∗R1/2 X

]

 0

and trace (W ), where W is a matrix variable and the joint
convexity of trace(RYX−1Y ∗) in (X,Y ) follows [4].

We also note that although the row-sparsity patterns of Y
and K are equivalent, the weights wi are not necessarily the

same in the respective expressions in Problems 1 and 2. In
practice, the weights are iteratively adapted to promote row-
sparsity; see Section IV-G. Problem 2 can be solved efficiently
using general-purpose solvers for a small number of variables.
To address larger problems, we next exploit the structure and
develop optimization algorithms based on the PG algorithm and
MM.

IV. CUSTOMIZED ALGORITHMS

In this section, we describe the steps through which we
solve Problem 2, identify the essential input channels in B,
and subsequently refine the solutions based on the identified
sparsity structure. For notational compactness, we write the
linear constraints in Problem 2 as

A1(X)− B(Y ) + V = 0

(1− δ) [A2(X)−G ] = 0

where the linear operators A1: Cn×n → Cn×n, A2: Cn×n →
Cp×p and B: Cm×n → Cn×n are given by

A1(X) := AX +X A∗

A2(X) := (CXC∗) ◦ E
B(Y ) := B Y + Y ∗B∗.

A. Elimination of Variable X

For any Y, there is a unique X that solves the equation

A1(X)− B(Y ) + V = 0 (9)

if and only if the matrices A∗ and−A do not have any common
eigenvalues [44]. When this condition holds, we can express the
variable X as an affine function of Y

X(Y ) = A−11 (B(Y )− V ) (10)

and restate Problem 2 as

minimize
Y

f(Y ) + γ g(Y )

subject to (1− δ) [A2(X(Y ))−G ] = 0

X(Y ) � 0. (11)

The smooth part of the objective function in (11) is given by

f(Y ) := trace
(
QX(Y ) + Y ∗RYX−1(Y )

)
(12)

and the regularizing term is

g(Y ) :=

n∑

i=1

wi ‖e∗iY ‖2. (13)

Since optimization problem (11) is equivalent to Problem 2
constrained to the affine equality (10), it remains convex.

When the matrixA is Hurwitz, expression (10) can be cast in
terms of the well-known integral representation

X(Y ) =

∫ ∞

0

eAt (V −B Y − Y ∗B∗) eA
∗t dt.

Even for unstable open-loop systems, the operator A1 is in-
vertible if the matrices A∗ and −A do not have any common
eigenvalues. In our customized algorithms, we numerically eval-
uate the action of A−11 on the current iterate by solving the
corresponding Lyapunov equation, which requires making the
following assumption.
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Algorithm 1: Customized PG Algorithm.
input: A, B, V , Q, R, γ > 0, positive constants εr, εn,
tolerance ε, and backtracking constant c ∈ (0, 1).

initialize: k = 0, α0,0 = 1, r0r = 1, r0n = 1, choose
Y 0 = K0X0 where K0 is a stabilizing feedback gain
with corresponding covariance matrix X0.

while: rkr > ε or rkn > ε
compute αk: largest feasible step in {cjαk,0}j=0,1,...

such that Y k+1 satisfies (18)
compute rk+1

r and rk+1
n

k = k + 1
choose αk,0 based on (17)

endwhile
output: ε-optimal solutions, Y k+1 and X(Y k+1).

Assumption 1: The operator A1 is invertible.
Appendix B provides a method to handle cases where this

assumption does not hold.

B. Proximal Gradient Method for Actuator Selection

The Proximal Gradient (PG) method generalizes gradient de-
scent to composite minimization problems in which the objective
function is the sum of a differentiable and nondifferentiable
component [45], [46]. It is most effective when the proximal
operator associated with the nondifferentiable component is easy
to evaluate; many common regularization functions, such as the
�1 penalty, nuclear norm, and hinge loss, satisfy this condition.
Herein, we present details of a customized variant of the PG
method for solving (11) with δ = 1. In Algorithm 1, we follow
the recommendations of [45] and [47] for choosing the step-size
and stopping criterion.

The PG method for solving (11) with δ = 1 is given by

Y k+1 := proxβkg

(
Y k − αk∇f(Y k)

)
(14)

where Y k is the kth iterate, αk > 0 is the step-size, and βk :=
γαk. The proximal operator of a real-valued proper, closed,
convex function h is defined as [48]

proxh(V ) := argmin
Y

(
h(Y ) +

1

2
‖Y − V ‖2F

)
. (15)

where ‖ · ‖F is the Frobenius norm. For the row-sparsity regu-
larizer, the proximal operator of the function βg is determined
by the soft-thresholding operator, which acts on the rows of the
matrix V , i.e., the ith row of proxh(V ) is given by

Sβ(e∗iV ) =

{
(1− βwi/‖e∗iV ‖2) e∗iV, ‖e∗iV ‖2 > βwi

0, ‖e∗iV ‖2 ≤ βwi.

Proximal update (14) results from a local quadratic approxi-
mation of f at iteration k, i.e.,

Y k+1 := argmin
Y

f(Y k) +
〈∇f(Y k), Y − Y k

〉

+
1

2αk
‖Y − Y k‖2F + γ g(Y ) (16)

followed by a completion of squares that brings the problem into
the form of (15) withh := γαkg. Here, 〈·, ·〉denotes the standard
matricial inner product 〈M1,M2〉 := trace (M ∗

1M2) and the
expression for the gradient of f(Y ) is provided in Appendix C.

1) Initialization and Choice of Step-Size in (14): The PG
algorithm is initialized with Y 0 = K0X0, where K0 is a stabi-
lizing feedback gain andX0 is the corresponding covariance ma-
trix that satisfies (4). The optimal centralized controller resulting
from the solution of the algebraic Riccati equation provides
a stabilizing initial condition and the closed-loop stability is
maintained via step-size selection in subsequent iterations of
Algorithm 1. At each iteration of the PG method, we determine
the step-size αk via an adaptive Barzilai–Borwein (BB) initial
step-size selection [47], i.e.,

αk,0 =

{
αm if αm/αs > 1/2
αs − αm/2 otherwise (17)

followed by backtracking to ensure closed-loop stability

X(Y k+1) � 0 (18a)

and sufficient descent of the objective function f(Y ) + γg(Y )
resulting from

f(Y k+1) ≤ f(Y k) +
〈∇f(Y k), Y k+1 − Y k

〉

+
1

2αk
‖Y k+1 − Y k‖2F . (18b)

Similar strategies as (18b) were used in [45, Section 3]. Here,
the “steepest descent” step-size αs and the “minimum residual”
step-size αm are given by

αs =

〈
Y k − Y k−1, Y k − Y k−1〉

〈Y k − Y k−1,∇f(Y k)−∇f(Y k−1)〉

αm =

〈
Y k − Y k−1,∇f(Y k)−∇f(Y k−1)

〉

〈∇f(Y k)−∇f(Y k−1),∇f(Y k)−∇f(Y k−1)〉 .

If αs < 0 or αm < 0, the step-size from the previous iteration
is used; see [47, Section 4.1] for additional details.

2) Stopping Criterion: We employ a combined condition
that terminates the algorithm when either the relative residual

rk+1
r =

‖rk+1‖
max{‖∇f(Y k+1)‖, ‖(Ŷ k+1 − Y k+1)/αk‖}+ εr

or the normalized residual

rk+1
n =

‖rk+1‖
‖r1‖+ εn

are smaller than a desired tolerance. Here, εr and εn are small
positive constants, the residual is defined as

rk+1 := ∇f(Y k+1) + (Ŷ k+1 − Y k+1)/αk

and Ŷ k+1 := Y k − αk∇f(Y k). While achieving a small rr
guarantees a certain degree of accuracy, its denominator nearly
vanishes when∇f(x�) = 0, which happens when 0 ∈ ∂g(Y �).
In such cases, ‖rn‖ provides an appropriate stopping criterion;
see [47, Section 4.6] for additional details.

C. Convergence of the Proximal Gradient Algorithm

We next analyze the convergence of the PG algorithm for the
strongly convex nonsmooth composite optimization problem

minimize
Y

f(Y ) + γ g(Y ). (19)
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The PG algorithm (14) with suitable step-size converges with
the linear rate O(ρk) for some ρ ∈ (0, 1) if: (i) the function f is
strongly convex and smooth (i.e., it has a Lipschitz continuous
gradient) uniformly over the entire domain; and (ii) the function
g is proper, closed, and convex [49, Th. 10.29]. In problem (11),
however, condition (i) does not hold over the function domain

Ds := {Y ∈ Cm×n| A1(X(Y ))− B(Y ) = −V, X(Y ) � 0}
(20)

corresponding to stabilizing feedback gains K = Y X−1. To
address this issue, we exploit the coercivity [48, Definition
11.10] of common regularization functions and establish linear
convergence of the PG method for a class of problems (19) in
which the function f satisfies the following assumption.

Assumption 2: For all scalars a, the proper closed convex
function f defined over an open convex domain D has

i) compact sublevel sets D(a) := {Y ∈ D | f(Y ) ≤ a};
ii) an La-Lipschitz continuous gradient over D(a);

iii) a strong convexity modulus μa > 0 over D(a).
Proposition 1 establishes linear convergence of the PG al-

gorithm with sufficiently small fixed step-size. Proofs of all
technical results presented here are provided in Appendix D.

Proposition 1: Let the function g be coercive, proper, closed,
and convex and let the function f in (19) satisfy conditions (i)
and (ii) in Assumption 2. Then, for any initial condition Y 0 ∈ D
the iterates {Y k} of the PG algorithm (14) with step-size α ∈
[0, 1/La] remain in the sublevel set D(a), with a > f(Y 0) +
γ (g(Y 0)− g(Y )), for all Y . Furthermore, if condition (iii) in
Assumption 2 also holds, then

‖Y k+1 − Y �‖2F ≤ (1− μaα) ‖Y k − Y �‖2F (21)

where Y � is the globally optimal solution of (19).
We next establish strong-convexity and smoothness for the

function f in (12) over its sublevel sets. These properties allow
us to invoke Proposition 1 and prove linear convergence for the
PG algorithm applied to problem (11) with δ = 1.

Proposition 2: The function f in (12) with the convex do-
main Ds given by (20) satisfies Assumption 2.

Our main result is presented in Theorem 1.
Theorem 1: For any stabilizing initial condition Y 0 ∈ Ds,

the iterates of the PG algorithm (14) with step-sizeα ∈ [0, 1/La]
applied to problem (11) with δ = 1 satisfy (21), where μa and
La are the strong convexity modulus and smoothness parameter
of the function f over D(a) with a > f(Y 0) + γ g(Y 0).

Proof: In addition to being proper, closed, and convex, it is
straightforward to verify that the function g given by (13) is
coercive, i.e.,

lim
‖Y ‖F →+∞

g(Y ) = +∞.

Moreover, from the nonnegativity of g(Y ), it follows that a >
f(Y 0) + γ (g(Y 0)− g(Y )) for all Y . Thus, the result follows
from combining Propositions 1 and 2. �

Remark 1: Proposition 1 proves that the PG algorithm
with fixed step-size α ∈ (0, 1/La] converges at the lin-
ear rate O((1− μaα)

k). A linear rate O(ρk) with ρ = 1−
min{1/(√2La), c/La} can also be guaranteed using the
adaptive step-size selection method of Section IV-B1; see
Appendix E. Here, c is the backtracking parameter in
Algorithm 1.

The next lemma provides an expression for the smoothness
parameter of the function f over its sublevel sets. We note that
this parameter depends on problem data.

Lemma 1: Over any nonempty sublevel set D(a), the gradi-
ent ∇f(Y ) is Lipschitz continuous with parameter

La =
2 λmax(R)

ν

(
1 +

√
a ‖A−11 B‖2√
ν λmin(R)

)2

(22a)

where the positive scalar

ν :=
λ2
min(V )

4 a

(
‖A‖2√
λmin(Q)

+
‖B‖2√
λmin(R)

)−2
(22b)

gives the lower bound νI � X(Y ) on the covariance matrix.
Remark 2: While Lemma 1 provides an expression for the

smoothness parameter, we have recently established an explicit
expression for the strong convexity modulus [50]

μa =
2 λmin(R)λmin(Q)

(
a1/2 + a2‖B‖2

(
λmin(Q)λmin(V )

√
νλmin(R)

)−1)2 .

Based on Theorem 1, the explicit expressions for parametersLa

andμa determine a theoretical bound of 1− μa/La on the linear
convergence rate of the PG algorithm with step-sizeαk = 1/La.
It should be noted that this bound depends on the initial condition
Y 0 and problem data.

D. Method of Multipliers for Covariance Completion

We handle the additional constraint in the covariance com-
pletion problem by employing the method of multipliers (MM).
MM is the dual ascent algorithm applied to a smooth variant of
the dual problem and it is widely used for solving constrained
nonlinear programming problems [51]–[53].

The MM algorithm for constrained optimization problem (11)
with δ = 0 is given by

Y k+1 := argmin
Y

Lρk
(Y ; Λk) (23a)

Λk+1 := Λk + ρk
(A2(X(Y k+1))−G) (23b)

where Lρ is the associated augmented Lagrangian

Lρ(Y ; Λ) = f(Y ) + γ g(Y )

+ 〈Λ,A2(X(Y ))−G〉+ ρ

2
‖A2(X(Y ))−G‖2F

Λ ∈ Cp×p is the Lagrange multiplier and ρ is a positive scalar.
The algorithm terminates when the primal and dual residuals are
small enough. The primal residual is given as

Δp = ‖A2(X(Y k+1))−G‖F (24a)

and the dual residual corresponds to the stopping criterion on
subproblem (23a)

Δd = min{rr, rn} (24b)

where the relative and normal residuals, rr and rn, are described
in Section IV-B.

1) Solution to the Y -Minimization Problem (23a): For
fixed {ρk,Λk}, minimizing the augmented Lagrangian with
respect to Y amounts to finding the minimizer of Lρk

(Y ; Λk)
subject to X(Y ) � 0. Since g(Y ) is nonsmooth, we cannot use
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standard gradient descent methods to find the update Y k+1.
However, similar to Section IV-B, a PG method can be used
to solve this subproblem iteratively

Y j+1 = proxβjg

(
Y j − αj∇F (Y j)

)
(25)

where j is the inner PG iteration counter,αj > 0 is the step-size,
βj := αjγ, andF (Y ) denotes the smooth part of the augmented
Lagrangian Lρk

(Y ; Λk)

F (Y ) := f(Y ) +
〈
Λk,A2(X(Y ))−G〉

+
ρk
2
‖A2(X(Y ))−G‖2F .

The expression for the gradient of F (Y ) is provided in
Appendix F. Similar to Section IV-B, we combine BB step-size
initialization with backtracking to satisfy conditions (18).

2) Lagrange Multiplier Update and Choice of Step-Size
in (23b): Customized MM for covariance completion is sum-
marized as Algorithm 2. We follow the procedure outlined
in [53, Algorithm 17.4] for the adaptive update of ρk. This
procedure allows for inexact solutions of subproblem (23a) and
a more refined update of the Lagrange multiplier Λ through the
adjustment of convergence tolerances on Δp and Δd. Note that
standard convergence results for MM depend on the level of
accuracy in solving subproblem (23a) [51, Sec. 5.3 and 5.4].
While we establish linear convergence of the PG algorithm for
solving this subproblem, we relegate a detailed convergence
analysis for the MM algorithm to future work.

E. Computational Complexity

Computation of the gradient in both algorithms involves
evaluation of X from Y based on (10), a matrix inversion, and
solution to the Lyapunov equation. Each of these take O(n3)
operations as well as an O(mn2) matrix–matrix multiplication.
The proximal operator for the function g amounts to computing
the two-norm of all m rows of a matrix with n columns, which
takes O(mn) operations. These steps are embedded within
an iterative backtracking procedure for selecting the step-size
α. If the step-size selection takes q1 inner iterations the total
computation cost for a single iteration of the PG algorithm is
O(q1n

3). On the other hand, if it takes q2 iterations for the
PG method to converge, the total computation cost for a single
iteration of our customized MM algorithm is O(q1q2n

3). In
practice, the backtracking constant c is chosen such that q1 < 50.
The computational efficiency of the PG algorithm relative to
standard SDP solvers whose worst-case complexity is O(n6)
is thus evident. However, in MM, q2 depends on the required
level of accuracy in solving (23a). While there is a clear tradeoff
between this level of accuracy and the number of MM steps,
careful analysis of such effects is beyond the scope of this article.
Nonetheless, in Section V-B, we demonstrate that relative to
the alternating direction method of multipliers (ADMM) and
SDPT3, customized MM can provide significant speedup.

F. Comparison With Other Methods

One way of dealing with the lack of differentiability of the
objective function in (11) is to split the smooth and nonsmooth
parts over separate variables and to add an additional equality
constraint to couple these variables. This allows for the mini-
mization of the augmented Lagrangian via the ADMM [54].

In contrast to splitting methods, the algorithms considered
in this article use the PG method to solve the nonsmooth

Algorithm 2: Customized MM Algorithm.
input: A, B, C, E, G, V , γ > 0, and tolerances εp and
εd.

initialize: k=0, ρ0=1, ρmax=10
9, ε0=1/ρ0, η0=ρ−0.10 ,

choose Y 0 = K0X0 where K0 is a stabilizing feedback
gain with corresponding covariance matrix X0.

for k = 0, 1, 2, . . .
solve (23a) using a similar PG algorithm to

Algorithm 1, such that Δd ≤ εk.
if Δp ≤ ηk

if Δp ≤ εp and Δd ≤ εd
stop with approximate solution Y k+1

else

Λk+1 = Λk + ρk
(A2(X(Y k+1))−G)

ρk+1 = ρk, ηk+1 = max{ηk ρ−0.9k+1 , εp}
εk+1 = max{εk/ρk+1, εd}

endif
else

Λk+1 = Λk

ρk+1 = {5ρk, ρmax}, ηk+1 = max{ρ−0.1k+1 , εp}
εk+1 = max{1/ρk+1, εd}

endif
endfor
output: optimal solutions, Y k+1 and X(Y k+1).

problem in terms of the primal variable Y , thereby avoiding
the necessity to update additional auxiliary variables and their
corresponding Lagrange multipliers. Moreover, it is important
to note that the performance of augmented Lagrangian-based
methods is strongly influenced by the choice of ρ. In contrast
to ADMM, there are principled adaptive rules for updating the
step-size ρk in MM. Typically, in ADMM, either a constant
step-size is used or the step-size is adjusted to keep the norms
of primal and dual residuals within a constant factor of one
another [54]. Our computational experiments demonstrate that
the customized proximal algorithms considered in this article
significantly outperform ADMM.

Remark 3: In [55], a customized ADMM algorithm was
proposed for solving the optimal sensor and actuator selection
problems. In this, the structural Lyapunov constraint onX andY
is dualized via the augmented Lagrangian. While this approach
does not rely on the invertibility of operator A1 [cf. (10)], it
involves subproblems that are difficult to solve. Furthermore, as
we show in Section V, it performs poorly in practice, especially
for large-scale systems. This is because of higher computational
complexity [O(n5) per iteration] of the ADMM algorithm de-
veloped in [55].

G. Iterative Reweighting and Polishing

To obtain sparser structures at lower values of γ, we fol-
low [56] and implement a reweighting scheme in which we run
the algorithms multiple times for each value of γ and update the
weights as wj+1

i = 1/(‖e∗iY j‖2 + ε). Here, Y j is the solution
in the jth reweighting step and the small parameter ε ensures
that the weights are well defined.
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TABLE I
COMPARISON OF DIFFERENT ALGORITHMS (IN SECONDS) FOR DIFFERENT

NUMBER OF DISCRETIZATION POINTS n AND γ = 10

After we obtain the solution to problem (11), we conduct
a polishing step to refine the solution based on the identified
sparsity structure. For this, we consider the system

ẋ = (A−BspK)x+ d

where the matrix Bsp ∈ Cn×q is obtained by eliminating the
columns of B corresponding to the identified row sparsity
structure of Y , and q denotes the number of retained input
channels. For this system, we solve optimization problem (11)
with γ = 0. This step allows us to identify the optimal matrices
Y ∈ Cq×n and K ∈ Cq×n for a system with a lower number of
input channels.

V. COMPUTATIONAL EXPERIMENTS

We provide two examples to demonstrate the utility of the
optimization framework for optimal actuator selection and co-
variance completion problems and highlight the computational
efficiency of our customized algorithms.

A. Actuator Selection

The Swift–Hohenberg equation is a partial differential equa-
tion that has been widely used as a model for studying pattern
formations in hydrodynamics and nonlinear optics [57]. Herein,
we consider the linearized Swift–Hohenberg equation around its
time independent spatially periodic solution [58]

∂t ψ(t, ξ) = −
(
∂2x + 1

)2
ψ(t, ξ)− c ψ(t, ξ) + f ψ(t, ξ)

+ u(t, ξ) + d(t, ξ)

with periodic boundary conditions on a spatial domain ξ ∈
[0, 2π]. Here, the state ψ(t, ξ) denotes the fluctuation field,
u(t, ξ) is a spatio-temporal control input, d(t, ξ) is a zero-mean
additive white noise, c is a constant bifurcation parameter,
and we assume that f(ξ) := α cos(ωξ) with α ∈ R. Finite di-
mensional approximation using the spectral collocation method
yields the following state-space representation:

ψ̇ = Aψ + u+ d. (26)

For c = −0.2,α = 2, andω = 1.25, the linearized dynamical
generator has two unstable modes. We set Q = I and R = 10I
and solve the actuator selection problem [problem (11) with
δ = 1] for 32, 64, 128, and 256 discretization points and for var-
ious values of the regularization parameterγ. Forγ = 10, Table I
compares the proposed PG algorithm against SDPT3 [59] and
the ADMM algorithm of [55]. Both PG and ADMM were ini-
tialized with Y 0 = KcXc, whereKc andXc solve the algebraic
Riccati equation, which specifies the optimal centralized con-
troller. This choice guarantees that X(Y 0) � 0. All algorithms

Fig. 2. Convergence curves showing performance of PG (−) and
ADMM (− · −) versus (a) the number of outer iterations. (b) Solve times
for the Swift–Hohenberg problem with n = 32 discretization points and
γ = 10. Here, Y � is the optimal value for Y .

Fig. 3. (a) Number of actuators as a function of the sparsity-promoting
parameter γ. (b) Performance comparison of the optimal feedback con-
troller resulting from the regularized actuator selection problem (◦) and
from the greedy algorithm (∗) for the Swift–Hohenberg problem with
n = 64.

were implemented in MATLAB and executed on a 2.9 GHz
Intel Core i5 processor with 16 GB RAM. The parser CVX [60]
was used to call the solver SDPT3. The algorithms terminate
when an iterate achieves a certain distance from optimality,
i.e., ‖Xk −X�‖F /‖X�‖F < ε and ‖Y k − Y �‖F /‖Y �‖F < ε.
The choice of ε = 10−3 guarantees that the value of the objective
function is within 0.01% of optimality. Forn = 256, CVX failed
to converge. In this case, iterations are run until the relative or
normalized residuals defined in Section IV-B2 become smaller
than 10−2.

For n = 128 and 256, ADMM did not converge to the desired
accuracy in reasonable time. Typically, the ADMM algorithm
of [55] computes low-accuracy solutions quickly but obtaining
higher accuracy requires precise solutions to subproblems. The
iterative reweighting scheme of Section IV-G can be used to
improve the sparsity patterns that are identified by such low-
accuracy solutions. Nonetheless, Fig. 2 shows that even for larger
tolerances, PG is faster than ADMM.

As γ increases in Problem 2, more and more actuators
are dropped and the performance degrades monotonically. For
n = 64, Fig. 3(a) shows the number of retained actuators as a
function of γ and Fig. 3(b) shows the percentage of performance
degradation as a function of the number of retained actuators.
Fig. 3(b) also illustrates that for various numbers of retained
actuators, the solution to convex optimization problem (11) with
δ = 1 consistently yields performance degradation that is not
larger than the performance degradation of a greedy algorithm

(that drops actuators based on their contribution to the H2
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Fig. 4. (a) Optimal centralized feedback gain matrix and (b) its
row-norms corresponding to the Swift–Hohenberg dynamics (26) with
n = 64. (c) The optimal feedback gain matrix and (d) its row-norms
(◦) resulting from solving Problem 2 with δ = 1 and γ = 0.4 in which
the rows between the dashed lines have been retained and polished
via optimization. The result of truncating the centralized feedback gain
matrix based on its row-norms is shown using blue ∗ symbols.

Algorithm 3: A Greedy Heuristic for Actuator Selection.
input: A, B, V , Q R.
initialize: Π← {1, . . . ,m}.
while: |Π| > 0 and f(Π) <∞

e∗ = argmine∈Π f(Π)− f(Π\{e})
Π← Π\{e∗}

endwhile
output: the set of actuators represented by the set Π.

performance index). For example, the greedy algorithm leads to
24.6% performance degradation when 30 actuators are retained
whereas our approach yields 20% performance degradation for
the same number of actuators. This greedy heuristic is summa-
rized in Algorithm 3, whereΠ is the set of actuators and f(Π) de-
notes the performance index resulting from the actuators within
the set Π. When the individual subproblems for choosing fixed
numbers of actuators can be executed rapidly, greedy algorithms
provide a viable alternative. There has also been recent effort to
prove the optimality of such algorithms for certain classes of
problems [61]. However, in our example, the greedy algorithm
does not always provide the optimal set of actuators with respect
to theH2 performance index. Relative to the convex formulation,
similar greedy techniques yield suboptimal sensor selection for
a flexible aircraft wing [7, Sec. 5.2].

The absence of the sparsity promoting regularizer in
Problem 2 leads to the optimal centralized controller which can
be obtained from the solution to the algebraic Riccati equation.
For n = 64, Fig. 4(a) and (b) show this centralized feedback
gain and the two norms of its rows, respectively. For γ = 0.4,
21 of 64 possible actuators are retained and the corresponding
optimal feedback gain matrix and row norms are shown in

Fig. 5. (a) Geometry of a 3-D pressure-driven channel flow. (b) Struc-
ture of the matrix Φ = limt→∞E(v(t)v∗(t)), where Φij denotes the
cross-correlation matrix of components vi and vj of the velocity vector
v across the discretization points in the wall-normal direction. Available
diagonal entries of the blocks in the velocity covariance matrix Φ deter-
mine correlations at the same discretization point.

Fig. 4(c) and (d). Figure 4(d) also shows that a truncation of
the centralized feedback gain matrix based on its row-norms
(marked by blue ∗ symbols) yields a different subset of actuators
than the solution to Problem 2.

B. Covariance Completion

We provide an example to demonstrate the utility of our
approach for the purpose of completing partially available
second-order statistics of a three-dimensional (3-D) channel
flow. In an incompressible channel-flow, the dynamics of in-
finitesimal fluctuations around the parabolic mean velocity pro-
file, ū = [U(x2) 0 0 ]

T with U(x2) = 1− x22, are governed by
the NS equations linearized around ū. The streamwise, wall-
normal, and spanwise coordinates are represented by x1, x2,
and x3, respectively; see Fig. 5(a) for geometry. Finite dimen-
sional approximation via application of the Fourier transform
in horizontal dimensions (x1 and x3) and spatial discretization
of the wall-normal dimension (x2) using N collocation points,
yields the state-space representation

ψ̇(k, t) = A(k)ψ(k, t) + ξ(k, t)

v(k, t) = C(k)ψ(k, t). (27a)

Here,ψ = [ vT2 η
T ]T ∈ C2N is the state of the linearized model,

v2 and η = ∂x3
v1 − ∂x1

v3 are the normal velocity and vor-
ticity, the output v = [ vT1 v

T
2 v

T
3 ]T ∈ C3N denotes the fluc-

tuating velocity vector, ξ is a stochastic forcing disturbance,
k = [ k1 k3 ]

T denotes the vector of horizontal wavenumbers,
and the input matrix is the identity I2N×2N . The dynamical ma-
trixA ∈ C2N×2N and output matrixC ∈ C3N×2N are described
in [13].

We assume that the stochastic disturbance ξ is generated by a
low-pass filter with state-space representation

ξ̇(k, t) = −ξ(k, t) + w(t) (27b)

where w denotes a zero-mean white process with identity co-
variance matrix. The steady-state covariance of system (27) can
be obtained as the solution to the Lyapunov equation

ÃΣ+ Σ Ã∗ + B̃ B̃∗ = 0

Ã =

[
A I
O −I

]
, B̃ =

[
0
I

]
,Σ =

[
Σ11 Σ12

Σ∗12 Σ22

]
.

For any k, the matrix Σ11 = limt→∞E(ψ(t)ψ∗(t)) denotes
the steady-state covariance of system (27a) and is related
to the steady-state covariance matrix of the output v via
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TABLE II
COMPARISON OF DIFFERENT ALGORITHMS (IN SECONDS) FOR DIFFERENT

NUMBER OF DISCRETIZATION POINTS N AND γ = 10

Φ(k) = C(k)Σ11(k)C
∗(k). Figure 5(b) shows the structure of

the output covariance matrix Φ.
In this example, we assume that all one-point velocity cor-

relations, i.e., the diagonal entries of all submatrices Φij in
Fig. 5(b), are known. Owing to experimental and computational
limitations, one-point correlations are easier to measure and
compute than two-point spatial correlations [10]. While the
colored-in-time input process ξ enters across all channels, not
all input channels equally impact the state statistics Σ11 as the
input to state gain differs across different inputs. Herein, we
seek a minimal set of input channels with dominant contribution
that can lead to a parsimonious perturbation A−BK of the
system dynamics. The identified structure represents important
feedback mechanisms that are responsible for generating the
available statistics when the system is driven by white noise
d. Finally, we note that due to the parameterization of system
dynamics (27) over wavenumbers k, modification BK also
depends on k.

Computational experiments are conducted for a flow with
Reynolds number 103, the wavenumber pair (k1, k3) = (0, 1),
for various number of collocation points N in the wall-normal
direction (state dimension n = 2N ), R = I , Q = 0, and for
various values of the regularization parameter γ. Moreover, we
assume that system (2) is driven by white process dwith covari-
ance V = I . We initialize Algorithm 2 with the optimal central-
ized controller, Y 0 := KcXc. Our MM algorithm is compared
against SDPT3 and ADMM where CVX is used to call SDPT3.
When CVX can compute the optimal solution of Problem 2,
for each method, iterations are run until the solutions are within
5% of the CVX solution. For larger problems, iterations are run
until the primal and dual residuals satisfy certain tolerances;
εp, εd = 10−2. For γ = 10, Table II compares various methods
based on run times (seconds). ForN = 51 and 101, CVX failed
to converge and ADMM did not converge in a reasonable time.
Clearly, MM outperforms ADMM. This can also be deduced
from Fig. 6, which shows convergence curves for 14 steps of
MM and 500 steps of ADMM for N = 31 and γ = 10. For this
example, Fig. 7 shows the convergence of MM based on the
normalized primal residual Δp/‖G‖F and the dual residual Δd

in (24).
We now focus on N = 51 collocation points and solve

Problem 2 for various values of γ. Since B = I , the num-
ber of inputs u in this case is m = 102. Figure 8 shows the
γ-dependence of the number of retained input channels that
result from solving Problem 2. As γ increases, more and more
input channels are dropped. A feature of our framework is that
the solution Y � determines, which inputs in u play a role in
matching the available statistics in a way that is consistent with
the underlying dynamics. Figure 9 shows the input channels that

Fig. 6. Convergence curves showing performance of MM (−) and
ADMM (−−) versus (a) the number of outer iterations; and (b) solve
times for N = 31 collocation points in the normal direction x2 and
γ = 10. Here, Y � is the optimal value for Y .

Fig. 7. Performance of MM for the fluids example with N = 31 colloca-
tion points in the normal direction x2 and γ = 10. (a) Normalized primal
residual and (b) dual residual based on (24).

Fig. 8. γ-dependence of the number of input channels that are re-
tained after solving problem (11) for the channel flow problem with
m = 102 inputs.

are retained via optimization for different values of γ. This figure
illustrates the dominant role of input channels that enter the
dynamics of normal velocity v2 and away from the boundaries
of the channel. In favor of brevity, we do not expand on the
physical interpretations of such findings.

Figure 10(b) and (d) shows the streamwise, and the stream-
wise/normal two-point correlation matrices [Φ11 and Φ12 in
Fig. 5(b)] resulting from solving (11) withγ = 100. Even though
only one-point velocity correlations along the main diagonal of
these matrices were used in Problem 2, we observe reasonable
recovery of off-diagonal terms of the full two-point velocity
correlation matrices and 82% of the original output covariance
matrix Φ is recovered. This quality of completion is consistently
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Fig. 9. Active input channels in u ∈ C102 (black dots) corresponding to
row-sparsity of Y ∗ in problem (11) with (a) γ = 0, (b) γ = 0.1, (c) γ = 10,
and (d) γ = 100, for the channel flow problem.

Fig. 10. True covariance matrices of the output velocity field (a, c), and
covariance matrices resulting from solving problem (11) (b, d) with γ =
100 and N = 51. (a, b) streamwise Φ11, and (c, d) streamwise/normal
Φ12 two-point correlation matrices at k = (0, 1). One-point correlation
profiles that are used as problem data are marked along the main
diagonals.

observed for various values of γ that do not result in the elim-
ination of the critical input channels in the direction of normal
velocity, and is an artifact of including the Lyapunov constraint
in our formulation. This allows us to simultaneously retain
the relevance of the system dynamics and match the partially
available statistics of the underlying dynamical system. Addi-
tional details regarding the stochastic modeling of turbulent flow
statistics and the importance of predicting two-point velocity
correlations can be found in [9].

VI. CONCLUDING REMARKS

We have examined two problems that arise in modeling and
control of stochastically driven dynamical systems. The first
addresses the modeling of second-order statistics by a parsi-
monious perturbation of system dynamics, while the second

deals with the optimal selection of sensors/actuators for estima-
tion/control purposes. We have shown that both problems can
be viewed as the selection of suitable feedback gains, guided by
similar optimality metrics and subject to closed-loop stability
constraints. We cast both problems as optimization problems and
use convex surrogates from group-sparsity paradigm to address
the combinatorial complexity of searching over all possible ar-
chitectures. While these are SDP representable, the applications
that drive our research give rise to the need for scalable algo-
rithms that can handle large problem sizes. We develop a unified
algorithmic framework to address both problems using proximal
methods. Our algorithms allow handling statistical modeling,
as well as sensor and actuator selection, for substantially larger
scales than what is amenable to current general-purpose solvers.

In this article, we promote row sparsity by penalizing a
weighted sum of row norms of the feedback gain matrix.
While we note that iterative reweighting [56] can improve the
row-sparsity patterns determined by this approach, the efficacy
of more refined approximations, namely low-rank inducing
norms [62], [63], for which proximal operators can be efficiently
computed, is a subject of future research. Moreover, we will
investigate solving these problems via primal-dual algorithms
based on the proximal augmented Lagrangian [64], [65], and
proximal Newton-type methods [66], [67].

APPENDIX

A. Sensor Selection

Consider the LTI system

ẋ = As x+ d

y = C x+ η

where y denotes measurement data which is corrupted by addi-
tive white noise η. If (A,C) is observable, the observer

˙̂x = As x̂+ LC (x− x̂) + Lη

provides an estimate x̂ of the state x, where L is the observer
gain. When As − LC is Hurwitz, the zero-mean estimate of
x is given by x̂. The Kalman gain minimizes the steady-state
variance of x− x̂, it is obtained by solving a Riccati equation,
and, in general, has no particular structure and uses all available
measurements.

Designing a Kalman filter that uses a subset of the available
sensors is equivalent to designing a column-sparse Kalman gain
matrixL. Based on this, the optimal sensor selection problem can
be addressed by solving the following regularized optimization
problem:

minimize
L,X

trace (XVd + LVηL
∗X) + γ

n∑

i=1

wi ‖L ei‖2

subject to (As − LC)∗X +X(As − LC) + C∗C = 0

X � 0 (28)

where γ, wi, ei are as described in Problem 1, Vd � 0 is the
covariance of d, and Vη � 0 is the covariance of η. By setting
the problem data in Problem 1 to

A = A∗s, B = C∗, Q = Vd

V = C∗C, R = Vη

Authorized licensed use limited to: University of Southern California. Downloaded on November 20,2022 at 00:49:31 UTC from IEEE Xplore.  Restrictions apply. 



3452 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 8, AUGUST 2020

the solution to problem (28) can be obtained from the solution
to the actuator selection problem as X and L = K∗.

B. Noninvertibility of A1

In cases, where the matrix X cannot be expressed via (10),
since (A,B) is a controllable pair we can center the design
variable around a stabilizing controller K0, i.e., by letting
K := K0 +K1, where K0 is held fixed and K1 is the design
variable. Based on this, the change of variables introduced
in Section III-C yields Y = K0X +K1X := K0X + Y1 and
X(Y1) = Â−11 (B(Y1)− V ) with

Â1(X) := (A−BK0)X +X (A−BK0)
∗ . (29)

The resulting optimization problem

minimize
Y1

f(Y1) + γ g(Y1 +K0X(Y1))

subject to (1− δ) [A2(X(Y1))−G ] = 0

X(Y1) � 0

involves a nonsmooth term g which is not separable in Y1, and
the smooth term is given by

f(Y1) := trace (QX(Y1))

+ trace ((Y1+K0X(Y1))
∗R (Y1+K0X(Y1))X

−1).

Although convex, g(Y1 +K0X(Y1)) does not have an easily
computable proximal operator, making it difficult to apply algo-
rithms that are based on proximal methods.

In this case, one may begin with an input matrix B0 such
that the pair (A,B0) is stabilizable and the nonzero columns
of B0 correspond to a subset of input channels I that always
remain active. It would thus be desired to search over input chan-
nels from the complement of I via the following optimization
problem:

minimize
Y1

f(Y1) + γ ĝ(Y1)

subject to (1− δ) [A2(X(Y1))−G ] = 0

X(Y1) � 0.

The operator Â1 in (29) would now be defined using B0 and
the fixed feedback gain matrix K0 that abides by the row-
sparsity structure corresponding to I. The regularization term
ĝ(Y1) :=

∑
i �∈ I wi‖e∗iY1‖2 is used to impose row-sparsity on

the remaining input channels i �∈ I and has an easily computable
proximal operator, thus facilitating the use of proximal meth-
ods. It is noteworthy that this approach may also be employed
to obtain an operator Â1, which is better conditioned than
A1.

The alternative approach would be to avoid this problem
altogether by not expressing X as a function of Y and directly
dualizing the Lyapunov constraint on X and Y via augmented
Lagrangian based methods, e.g., ADMM [55]. However, as we
show in Section V, such approaches do not lead to algorithms
that are computationally efficient for large problems.

C. Gradient of f(Y ) in (14)

To find ∇f(Y ) in (14), we expand f(Y + ε Ỹ ) around Y
for the variation εỸ , and collect first-order terms in ε. We also
account for the variation of X as a result of the variation of Y
from

(X + ε X̃)−1 = X−1 − εX−1X̃ X−1 + o(ε)

and the linear dependence of X̃ on Ỹ , i.e., X̃ = A−11 (B(Ỹ )).
Here, o(ε) contains higher-order terms in ε. Thus, at the kth
iteration, the gradient of f with respect to Y is given by

∇f(Y k) = 2RY kX−1 − 2B∗(W2 −W1)

where W1 and W2 solve the Lyapunov equations

A∗W1 +W1A+X−1Y k∗RY kX−1 = 0

A∗W2 +W2A+Q = 0

and X−1 denotes the inverse of X(Y k).

D. Proofs of Section IV-C

1) Proof of Proposition 1: Without loss of generality, let
γ = 1 and a = b− c, where b = f(Y 0) + g(Y 0) and c < g(Y )
is a lower bound on the function g. Consider the sublevel set

E(b) := {Y ∈ D | f(Y ) + g(Y ) ≤ b }.
It is easy to verify thatY 0 ∈ E(b) ⊂ D(a). For a givenY ∈ E(b),
let P : R+ → Cm×n be defined as

P (α) = proxαg (Y − α∇f(Y )) .

In what follows, we show that P (α) ∈ E(b) for all α ∈
[0, 1/La], with La being the Lipschitz continuity parameter of
∇f(Y ) over the sublevel set D(a). Since P (0) = Y , this holds
trivially for α = 0. For α > 0, consider the quadratic function
lα : Cm×n → R

lα(Ŷ ) := f(Y ) +
〈
∇f(Y ), Ŷ − Y

〉
+

1

2α
‖Ŷ − Y ‖2

which satisfies

f(Ŷ ) ≤ lα(Ŷ ) (30)

for all Ŷ ∈ D(a) and α ∈ (0, 1/La]. Inequality (30) follows
from theLa-Lipschitz continuity of∇f(Y ) overD(a) (Descent
Lemma). Moreover, by definition

P (α) = argmin
Ŷ ∈Cm×n

lα(Ŷ ) + g(Ŷ ) (31)

and lα(Y ) = f(Y ), which yields

lα(P (α)) + g(P (α)) ≤ f(Y ) + g(Y ) ≤ b (32)

for all positive α. We next show that P (α) ∈ D(a) for all α ∈
(0, 1/La], which allows us to substitute P (α) for Ŷ in (30) and
complete the proof by combining (30) and (32).

Since the functions g and ‖ · ‖2 are coercive, it follows
from [48, Th. 26.20] that the map P (α) is continuous. Let
α1 ∈ (0,+∞] be the smallest scalar such that f(P (α1)) ≥ a.
Such α1 exists and f(P (α1)) = a because the set D is open,
the function f(P (α)) is continuous, and f(P (0)) = f(Y ) < a.
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We next show that α1 > 1/La. For the sake of contradiction,
suppose α1 ≤ 1/La. By substituting P (α1) for Ŷ in (30),
using (32), and c < g(P (α1)), we arrive at

a = f(P (α1)) ≤ lα1
(P (α1)) < b− c

which contradicts with a = b− c. Thus, α1 > 1/La and
P (α) ∈ D(a) for all α ∈ [0, 1/La]. Furthermore, based on this,
substituting P (α) in (30) and utilizing (32) gives

f(P (α)) + g(P (α)) ≤ b

which in turn implies P (α) ∈ E(b).
Based on the fact that we can restrict the domain of the

optimization problem (19) to the sublevel set D(a), the rest of
the proof about the convergence rate follows from the proof of
[49, Th. 10.29].

2) Proof of Proposition 2: It is straightforward to verify
that the set Ds is open. We first utilize previously established
properties of the set of stabilizing feedback gains to prove that
the sublevel sets D(a) of the function f(Y ) are compact. We
then prove that for any compact set C ⊂ Ds there exist a strong
convexity modulus μ > 0 and a smoothness parameter L > 0
for f(Y ) over C.

Consider the function Y (K) := KX(K), where K belongs
to the set of stabilizing feedback gains Ks and X(K) � 0 is
the unique solution to the algebraic Lyapunov equation (4).
The function X(K) is continuous and the sublevel sets of the
function f(Y (K))

K(a) := {K ∈ Ks | f(Y (K)) ≤ a}
are compact [68]. Since the sublevel setD(a) is the image of the
compact set K(a) under the continuous map Y (K), it follows
that D(a) is also compact.

The next lemma provides an expression for the second-order
approximation of the function f(Y ).

Lemma 2: The Hessian of the function f(Y ) satisfies
〈
Ỹ ,∇2f(Y ; Ỹ )

〉
= 2 ‖R 1

2 (Ỹ − Y X−1M(Ỹ ))X−
1
2 ‖2F

where X = A−11 (B(Y )− V ) andM(Ỹ ) := A−11 (B(Ỹ )).
Proof: For any Y ∈ Ds and X = A−11 (B(Y )− V ), the

function f(X,Y ) in Problem 2 reduces to f(Y ). The second-
order approximation of f(Y ) is determined by

f(Y + Ỹ ) ≈ f(Y ) +
〈
∇f(Y ), Ỹ

〉
+

1

2

〈
Ỹ ,∇2f(Y ; Ỹ )

〉

where the matrix∇2f(Y ; Ỹ ) depends linearly on Ỹ .
The gradient ∇f(X,Y ) can be found by expanding f(X +

ε X̃, Y + ε Ỹ ) around the ordered pair (X,Y ) for the variation
(εX̃, εỸ ) and collecting first-order terms in ε. This yields

∇Xf(X,Y ) = Q−X−1Y ∗RYX−1

∇Y f(X,Y ) = 2RYX−1.

To find the Hessian, we expand ∇f(X + ε X̃, Y + ε Ỹ )

∇Xf(X + εX̃, Y )−∇Xf(X,Y ) = εN1 + o(ε)

∇Xf(X,Y + εỸ )−∇Xf(X,Y ) = εN2 + o(ε)

∇Y f(X + εX̃, Y )−∇Y f(X,Y ) = εN3 + o(ε)

∇Y f(X,Y + εỸ )−∇Y f(X,Y ) = εN4 + o(ε)

where the matrices

N1 := X−1Y ∗RYX−1X̃X−1 +X−1X̃X−1Y ∗RYX−1

N2 := −X−1Ỹ ∗RY X−1 −X−1Y ∗R Ỹ X−1

N3 := − 2RYX−1X̃ X−1

N4 := 2R Ỹ X−1

depend linearly on X̃ and Ỹ . Thus, we arrive at
〈
(X̃, Ỹ ),∇2f(X,Y ; X̃, Ỹ )

〉

=
〈
X̃,N1 +N2

〉
+
〈
Ỹ , N3 +N4

〉

= 2 ‖R 1
2 (Ỹ − Y X−1X̃)X−

1
2 ‖2F .

The result follows from A1(X̃) = B(Ỹ ). �
Let us define ζ: Ds × S1 → R as

ζ(Y, Ỹ ) =
〈
Ỹ ,∇2f(Y, Ỹ )

〉

where S1 := {Ỹ ∈ Cm×n | ‖Ỹ ‖F = 1}. To establish strong
convexity of f(Y ) and Lipschitz continuity of its gradient over
a compact set C, we find a positive lower bound μ and an upper
bound L on ζ, μ ≤ ζ(Y, Ỹ ) ≤ L, for all (Y, Ỹ ) ∈ C × S1.

Using the expression in Lemma 2, it is straightforward to show
that the function ζ is continuous. From the continuity of ζ(Y, Ỹ )
and the compactness of C × S1, it follows that ζ is bounded on
C × S1. This implies the existence of an upper bound L. To
find a positive lower bound, let (Yo, Ỹo) be a minimizer of the
function ζ(Y, Ỹ ) over the set C × S1. The existence of (Yo, Ỹo)
follows from the compactness of C × S1 and the continuity of
the function ζ. We next show that μ := ζ(Yo, Ỹo) > 0.

Suppose, for the sake of contradiction, that ζ(Yo, Ỹo) = 0.
From Lemma 2, we have

Ỹo = Ko X̃o (33)

where Ko = YoX
−1
o , Xo = X(Yo), and

X̃o =M(Ỹo). (34)

Combining (34) and the Lyapunov equation (9) yields

A1(Xo + X̃o)− B(Yo + Ỹo) = −V. (35)

From (33), we also have

Yo + Ỹo = Ko (Xo + X̃o). (36)

Substituting for Yo + Ỹo in (35) from (36), we arrive at

A1(Xo + X̃o)− B
(
Ko (Xo + X̃o)

)
= −V.

Consequently, bothXo andXo + X̃o solve the Lyapunov equa-
tion with stabilizing feedback gainKo, which is a contradiction.
Thus, ζ(Yo, Ỹo) is positive. This completes the proof.
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3) Proof of Lemma 1: We first show that the positive defi-
nite matrix X = A1(B(Y )− V ) satisfies

νI � X (37)

with ν given by (22b). Let v be the normalized eigenvector
corresponding to the smallest eigenvalue of X . Multiplying
Lyapunov equation (9) from left and right by v∗ and v gives

v∗
(
DX

1
2 +X

1
2D∗

)
v =

√
λmin(X) v∗(D +D∗) v

= −v∗V v
where D := AX1/2 −BYX−1/2. We thus have

λmin(X) =
(v∗V v)2

(v∗(D +D∗) v)2
≥ λ2

min(V )

4 ‖D‖22
(38)

where we have applied the Cauchy–Schwarz inequality on the
denominator. For Y ∈ D(a), we have

trace
(
QX + Y ∗RYX−1

) ≤ a.

This inequality along with trace(QX) ≥ λmin(Q) ‖X1/2‖2F
and trace(RYX−1Y ∗) ≥ λmin(R) ‖Y X−1/2‖2F yields

‖X1/2‖2F ≤ a/λmin(Q) (39a)

‖Y X−1/2‖2F ≤ a/λmin(R). (39b)

Combination of the triangle inequality, submultiplicative prop-
erty of the two-norm, and (39) leads to

‖D‖2 ≤
√
a

(
σmax(A)√
λmin(Q)

+
σmax(B)√
λmin(R)

)
. (40)

Inequality (37), with ν given by (22b), follows from combin-
ing (38) and (40).

We now show that La given by (22a) is a Lipschitz continuity
parameter of ∇f . From (39b) and (37), we have

‖Y X−1‖2F ≤
a

λmin(R)λmin(X)
≤ a

ν λmin(R)
. (41)

This allows us to upper bound the quadratic form provided in
Lemma 2

〈
Ỹ ,∇2f(Y, Ỹ )

〉
= 2 ‖R 1

2 (Ỹ − Y X−1M(Ỹ ))X−
1
2 ‖2F .

In particular, for Y ∈ D(a) and Ỹ with ‖Ỹ ‖F = 1, we have

2 ‖R 1
2 (Ỹ − Y X−1M(Ỹ ))X−

1
2 ‖2F

≤ 2 λmax(R)λmax(X
−1)‖Ỹ − Y X−1M(Ỹ )‖2F

≤ 2 λmax(R)λmax(X
−1)

(‖Ỹ ‖F + ‖Y X−1M(Ỹ )‖F
)2

≤ 2 λmax(R)

ν

(
1 +

√
a‖M‖2√
ν λmin(R)

)2

= La

where the last inequality follows from (37), (41), and the sub-
multiplicative property. This completes the proof.

E. Linear Convergence With Adaptive Step-Size
Selection

We show that iterates {Y k} of the PG algorithm with the
backtracking scheme of Section IV-B1 remain in D(a) and
achieve linear convergence. The main challenge in proving the
first part of Proposition 1 is to show that (30) holds for Ŷ =
P (αk),αk ∈ (0, 1/La], whereP (αk) is given by (31). However,
condition (18b) is itself equivalent to (30) with Ŷ = P (αk).
Thus, from the proof of Proposition 1, it is easy to verify that
the iterates {Y k} ⊂ D(a) and

‖Y k+1 − Y �‖2F ≤ (1− μaαk) ‖Y k − Y �‖2F . (42)

Here, we show that the adaptive backtracking method generates
a sequence {αk} that is lower bounded by a fixed positive scalar.
Together with (42), this lower bound yields linear convergence
for the PG method with backtracking.

As we discussed in the proof of Proposition 1, the step-size
αk = 1/La satisfies conditions (18). Thus, backtracking from
a constant initial step-size αk,0 would result in a step-size
αk ≥ min{αk,0, c/La}, where c is the backtracking parameter
in Algorithm 1. While the initialization αk,0 proposed by (17)
is not constant, we show that αk,0 ≥ 1/(

√
2L′), for any

L′ ≥ ‖Δ2‖F /‖Δ1‖F (43)

where Δ1 := Y k − Y k−1 and Δ2 := ∇f(Y k)−∇f(Y k−1).
Assuming 〈Δ1,Δ2〉 > 0, the steepest descent and minimum
residual step-sizes are given by αs = ‖Δ1‖2F / 〈Δ1,Δ2〉 and
αm = 〈Δ1,Δ2〉 /‖Δ2‖2F , respectively. If αm/αs > 1/2, then√
2 〈Δ1,Δ2〉 > ‖Δ1‖‖Δ2‖, which yields

αk,0 =
〈Δ1,Δ2〉
‖Δ2‖2F

>
‖Δ1‖F√
2‖Δ2‖F

≥ 1√
2L′

.

On the other hand, if αm/αs ≤ 1/2, then
√
2 〈Δ1,Δ2〉 ≤

‖Δ1‖F ‖Δ2‖F , which yields

αk,0 =
‖Δ1‖2F
〈Δ1,Δ2〉 −

〈Δ1,Δ2〉
2‖Δ2‖2F

≥ 3

2
√
2

‖Δ1‖F
‖Δ2‖F ≥ 3

2
√
2L′

.

Since Y k, Y k−1 ∈ D(a), inequality (43) holds withL′ = La

the Lipschitz continuity factor of ∇f(Y ) over D(a). Thus, the
resulting step-size satisfies αk ≥ min{1/(√2La), c/La}.

F. Gradient of F (Y ) in (25)

Similar to Appendix C, we expand F (Y + ε Ỹ ) around Y for
the variation εỸ , and collect first-order terms in ε. At the kth
iteration, the gradient of F with respect to Y is given by

∇F (Y k) = 2Y kX−1 − 2B∗(W2 + ρkW3 −W1)

where W1, W2, and W3 solve the Lyapunov equations

A∗W1 +W1A+X−1Y k∗Y kX−1 = 0

A∗W2 +W2A+A†2
(
Λk

)
= 0

A∗W3 +W3A+A†2
(A2

(
X(Y k)

)−G) = 0
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Here, X−1 denotes the inverse of X(Y k) and the adjoint of the
operator A2 is given by A†2(Λ) := C∗(E ◦ Λ)C.
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Varshney, “Sensor selection for estimation with correlated measurement
noise,” IEEE Trans. Signal Process., vol. 64, no. 13, pp. 3509–3522, Jul.
2016.

[30] V. Kekatos, G. B. Giannakis, and B. Wollenberg, “Optimal placement
of phasor measurement units via convex relaxation,” IEEE Trans. Power
Syst., vol. 27, no. 3, pp. 1521–1530, Aug. 2012.

[31] J. L. Rogers, “A parallel approach to optimum actuator selection with a
genetic algorithm,” in Proc. AIAA Guid., Navigation, Control Conf., 2000,
pp. 14–17.

[32] S. Kondoh, C. Yatomi, and K. Inoue, “The positioning of sensors and
actuators in the vibration control of flexible systems,” JSME Int. J., Ser.
III, vol. 33, no. 2, pp. 145–152, 1990.

[33] K. Hiramoto, H. Doki, and G. Obinata, “Optimal sensor/actuator place-
ment for active vibration control using explicit solution of algebraic Riccati
equation,” J. Sound Vib., vol. 229, no. 5, pp. 1057–1075, 2000.

[34] K. K. Chen and C. W. Rowley, “H2 optimal actuator and sensor placement
in the linearised complex Ginzburg-Landau system,” J. Fluid Mech.,
vol. 681, pp. 241–260, 2011.

[35] M. Fardad, F. Lin, and M. R. Jovanović, “Sparsity-promoting optimal
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heuristic in covariance completion problems,” in Proc. IEEE 55th Conf.
Decis. Control, 2016, pp. 1978–1983.

[63] C. Grussler, “Rank reduction with convex constraints,” Ph.D. dissertation,
Lund Univ., Lund, Sweden, 2017.

[64] N. K. Dhingra, S. Z. Khong, and M. R. Jovanović, “The proximal aug-
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