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Abstract—We study the robustness of accelerated
first-order algorithms to stochastic uncertainties in gra-
dient evaluation. Specifically, for unconstrained, smooth,
strongly convex optimization problems, we examine the
mean-squared error in the optimization variable when the
iterates are perturbed by additive white noise. This type of
uncertainty may arise in situations where an approximation
of the gradient is sought through measurements of a real
system or in a distributed computation over a network.
Even though the underlying dynamics of first-order algo-
rithms for this class of problems are nonlinear, we establish
upper bounds on the mean-squared deviation from the
optimal solution that are tight up to constant factors. Our
analysis quantifies fundamental tradeoffs between noise
amplification and convergence rates obtained via any
acceleration scheme similar to Nesterov’s or heavy-ball
methods. To gain additional analytical insight, for strongly
convex quadratic problems, we explicitly evaluate the
steady-state variance of the optimization variable in terms
of the eigenvalues of the Hessian of the objective function.
We demonstrate that the entire spectrum of the Hessian,
rather than just the extreme eigenvalues, influences robust-
ness of noisy algorithms. We specialize this result to the
problem of distributed averaging over undirected networks
and examine the role of network size and topology on the
robustness of noisy accelerated algorithms.

Index Terms—Accelerated first-order algorithms, con-
sensus networks, control for optimization, convex optimiza-
tion, integral quadratic constraints, linear matrix inequal-
ities (LMIs), noise amplification, second-order moments,
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I. INTRODUCTION

F IRST-ORDER algorithms are well suited for solving a
broad range of optimization problems that arise in statistics,

signal and image processing, control, and machine learning
[1]–[5]. Among these algorithms, accelerated methods enjoy
the optimal rate of convergence, and they are popular because
of their low per-iteration complexity. There is a large body of
literature dedicated to the convergence analysis of these methods
under different stepsize selection rules [2], [5]–[9]. In many
applications, however, the exact value of the gradient is not
fully available, e.g., when the objective function is obtained via
costly simulations (e.g., tuning of hyperparameters in super-
vised/unsupervised learning [10]–[12] and model-free optimal
control [13]–[16]), when evaluation of the objective function
relies on noisy measurements (e.g., real-time and embedded
applications), or when the noise is introduced via communica-
tion between different agents (e.g., distributed computation over
networks). Another related application arises in the context of
(batch) stochastic gradient, where, at each iteration, the gradient
of the objective function is computed from a small batch of data
points. Such a batch gradient is known to be a noisy unbiased
estimator for the gradient of the training loss. Moreover, additive
noise may be introduced deliberately in the context of noncon-
vex optimization to help the iterates escape saddle points and
improve generalization [17], [18].

In all above situations, first-order algorithms only have ac-
cess to noisy estimates of the gradient. This observation has
motivated the robustness analysis of first-order algorithms under
different types of noisy/inexact gradient oracles [19]–[24]. For
example, in a deterministic noise scenario, an upper bound on the
error in iterates for accelerated proximal gradient methods was
established in [25]. This study showed that both proximal gra-
dient and its accelerated variant can maintain their convergence
rates, provided that the noise is bounded and that it vanishes
fast enough. Moreover, it has been shown that in the presence of
random noise, with the proper diminishing stepsize, acceleration
can be achieved for general convex problems. However, in this
case, optimal rates are sublinear [26].

In the context of stochastic approximation, while early results
suggest to use a stepsize that is inversely proportional to the
iteration number [20], a more robust behavior can be obtained
by combining larger stepsizes with averaging [21], [27]–[29].
Utility of these averaging schemes and their modifications
for solving quadratic optimization and manifold problems has
been examined thoroughly in recent years [30]–[32]. Moreover,
several studies have suggested that accelerated first-order
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algorithms are more susceptible to errors in the gradient
compared to their nonaccelerated counterparts [22], [23], [25],
[33]–[35].

One of the basic sources of error that arises in computing the
gradient can be modeled by additive white stochastic noise. This
source of error is typical for problems in which the gradient is
being sought through measurements of a real system [36], and it
has a rich history in analysis of stochastic dynamical systems and
control theory [37]. Moreover, in many applications, including
distributed computing over networks [38], [39], coordination in
vehicular formations [40], and control of power systems [41],
additive white noise is a convenient abstraction for the ro-
bustness analysis of distributed control strategies [39] and of
first-order optimization algorithms [42], [43]. Motivated by this
observation, in this article, we consider the scenario in which a
white stochastic noise with zero mean and identity covariance is
added to the iterates of standard first-order algorithms: gradient
descent, Polyak’s heavy-ball method, and Nesterov’s accelerated
algorithm. By confining our attention to smooth strongly convex
problems, we provide a tight quantitative characterization for
the mean-squared error of the optimization variable. Since this
quantity provides a measure of how noise gets amplified by the
dynamics resulting from optimization algorithms, we also refer
to it as noise (or variance) amplification. We demonstrate that
our quantitative characterization allows us to identify funda-
mental tradeoffs between the noise amplification and the rate of
convergence obtained via acceleration.

This article is based on our recent conference papers [44],
[45]. In a concurrent work [46], a similar approach was taken
to analyze the robustness of gradient descent and Nesterov’s
accelerated method. Therein, it was shown that for a given
convergence rate, one can select the algorithmic parameters
such that the steady-state mean-squared error in the objective
value of a Nesterov-like method becomes smaller than that of
gradient descent. This is not surprising because gradient descent
can be viewed as a special case of Nesterov’s method with a zero
momentum parameter. Using this argument, similar assertions
have been made about the variance amplification of the iterates.
This observation has been used to design an optimal multistage
algorithm that does not require any information about the vari-
ance of the noise [47]. On the contrary, we demonstrate that
there are fundamental differences between these two robustness
measures, i.e., objective values and iterates, as the former does
not capture the negative impact of acceleration in the presence
of noise.

Focusing on the error in the iterates, we show that any choice
of parameters for Nesterov’s or heavy-ball methods that yields
an accelerated convergence rate increases variance amplification
relative to gradient descent. More precisely, for the problem
with the condition number κ, an algorithm with accelerated
convergence rate of at least 1− c/

√
κ, where c is a positive

constant, increases the variance amplification in the iterates by
a factor of

√
κ. The robustness problem was also studied in [48],

where the authors show a similar behavior of Nesterov’s method
and gradient descent in an asymptotic regime, in which the
stepsize goes to zero. In contrast, we focus on the nonasymptotic
stepsize regime and establish fundamental differences between
gradient descent and its accelerated variants in terms of noise
amplification.

More recently, the problem of finding upper bounds on the
variance amplification was cast as a semidefinite program [49].
This formulation provided numerical results that are consistent

with our theoretical upper bounds in terms of the condition
number. In [49], structured objective functions (e.g., diagonal
Hessians) that arise in distributed optimization were also studied,
and the problem of designing robust algorithms were formulated
as a bilinear matrix inequality (which, in general, is not convex).

Contributions: The effect of imperfections on the perfor-
mance and robustness of first-order algorithms has been studied
in [23] and [31], but the influence of acceleration on stochastic
gradient perturbations has not been precisely characterized. We
employ control-theoretic tools suitable for analyzing stochas-
tic dynamical systems to quantify such influence and identify
fundamental tradeoffs between acceleration and noise amplifi-
cation. The main contributions of this article are the following.

1) We start our analysis by examining strongly convex
quadratic optimization problems for which we can ex-
plicitly characterize variance amplification of first-order
algorithms and obtain analytical insight. In contrast to
convergence rates, which solely depend on the extreme
eigenvalues of the Hessian matrix, we demonstrate that
the variance amplification is influenced by the entire
spectrum.

2) We establish the relation between the noise amplifica-
tion of accelerated algorithms and gradient descent for
parameters that provide the optimal convergence rate
for strongly convex quadratic problems. We also explain
how the distribution of the eigenvalues of the Hessian
influences these relations and provides examples to show
that acceleration can significantly increase amplification
of noise.

3) We address the problem of tuning the algorithmic parame-
ters and demonstrate the existence of a fundamental trade-
off between the rate of convergence and noise amplifica-
tion: for problems with condition number κ and bounded
dimension n, we show that any choice of parameters in
accelerated methods that yields the linear convergence
rate of at least 1− c/

√
κ, where c is a positive constant,

increases noise amplification in the iterates relative to
gradient descent by a factor of at least

√
κ.

4) We extend our analysis from quadratic objective func-
tions to general strongly convex problems. We borrow
an approach based on linear matrix inequalities (LMIs)
from control theory to establish upper bounds on the noise
amplification of both gradient descent and Nesterov’s ac-
celerated algorithm. Furthermore, for any given condition
number, we demonstrate that these bounds are tight up to
constant factors.

5) We apply our results to distributed averaging over large-
scale undirected networks. We examine the role of net-
work size and topology on noise amplification and further
illustrate the subtle influence of the entire spectrum of the
Hessian matrix on the robustness of noisy optimization
algorithms. In particular, we identify a class of large-
scale problems for which accelerated Nesterov’s method
achieves the same orderwise noise amplification (in terms
of condition number) as gradient descent.

Article structure: The rest of this article is organized as
follows. In Section II, we formulate the problem and provide
background material. In Section III, we explicitly evaluate the
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variance amplification (in terms of the algorithmic parameters
and problem data) for strongly convex quadratic problems, de-
rive lower and upper bounds, and provide a comparison between
the accelerated methods and gradient descent. In Section IV,
we extend our analysis to general strongly convex problems.
In Section V, we establish fundamental tradeoffs between the
rate of convergence and noise amplification. In Section VI, we
apply our results to the problem of distributed averaging over
noisy undirected networks. We highlight the subtle influence of
the distribution of the eigenvalues of the Laplacian matrix on
variance amplification and discuss the roles of network size and
topology. Section VII concludes this article.

II. PRELIMINARIES AND BACKGROUND

In this article, we quantify the effect of stochastic uncertainties
in gradient evaluation on the performance of first-order algo-
rithms for unconstrained optimization problems

minimize
x

f(x) (1)

where f : Rn → R is strongly convex with Lipschitz continuous
gradient ∇f . Specifically, we examine how gradient descent

xt+1 = xt − α∇f(xt) + σwt (2a)

Polyak’s heavy-ball method

xt+2 = xt+1 + β(xt+1 − xt)− α∇f(xt+1) + σwt (2b)

and Nesterov’s accelerated method

xt+2 = xt+1 + β(xt+1 − xt)

− α∇f (xt+1 + β(xt+1 − xt)
)
+ σwt (2c)

amplify the additive white stochastic noise wt with zero
mean and identity covariance matrix, i.e., E[wt] = 0 and
E[wt(wτ )T ] = I δ(t− τ). Here, t is the iteration index, xt is
the optimization variable, α is the stepsize, β is an extrapolation
parameter used for acceleration, σ is the noise magnitude, δ is
the Kronecker delta, and E is the expected value. When the only
source of uncertainty is a noisy gradient, we set σ = α in (2).

The set of functions f that are m-strongly convex and L-
smooth is denoted by FL

m; f ∈ FL
m means that f(x)− m

2 ‖x‖2
is convex and that the gradient ∇f is L-Lipschitz continuous.
In particular, for a twice continuously differentiable function f
with the Hessian matrix ∇2f , we have

f ∈ FL
m ⇔ mI � ∇2f(x) � LI ∀x ∈ Rn.

In the absence of noise (i.e., for σ = 0), for f ∈ FL
m, the pa-

rameters α and β can be selected such that gradient descent and
Nesterov’s accelerated method converge to the global minimum
x� of (1) with a linear rate ρ < 1, i.e.,

‖xt − x�‖ ≤ c ρt‖x0 − x�‖
for all t and some c > 0. Table I provides the conventional
values of these parameters and the corresponding guaranteed
convergence rates [9]. Nesterov’s method with the parame-
ters provided in Table I enjoys the convergence rate ρna =√
1− 1/

√
κ ≤ 1− 1/(2

√
κ), whereκ := L/m is the condition

number associated with FL
m. This rate is orderwise optimal in

the sense that no first-order algorithm can optimize all f ∈ FL
m

with the rate ρlb = (
√
κ− 1)/(

√
κ+ 1) [9, Th. 2.1.13]. Note

that 1− ρlb = O(1/
√
κ) and 1− ρna = Ω(1/

√
κ). In contrast

to Nesterov’s method, the heavy-ball method does not offer any

TABLE I
CONVENTIONAL VALUES OF PARAMETERS AND THE CORRESPONDING

RATES FOR f ∈ FL
m, ‖xt − x�‖ ≤ c ρt ‖x0 − x�‖, WHERE κ := L/m AND

c > 0 IS A CONSTANT [9, THEOREMS 2.1.15 AND 2.2.1]

The heavy-ball method does not offer acceleration guarantees for all f ∈ FL
m.

acceleration guarantees for all f ∈ FL
m. However, for strongly

convex quadratic f , parameters can be selected to guarantee
linear convergence of the heavy-ball method with a rate that
outperforms the one achieved by Nesterov’s method [50] (see
Table II).

To provide a quantitative characterization for the robustness
of algorithms (2) to the noise wt, we examine the performance
measure

J := lim sup
t→∞

1

t

t∑
k=0

E
(‖xk − x�‖2) . (3)

For quadratic objective functions, algorithms (2) are linear
dynamical systems. In this case, J quantifies the steady-state
variance amplification, and it can be computed from the solution
of the algebraic Lyapunov equation (see Section III). For general
strongly convex problems, there is no explicit characterization
for J , but techniques from control theory can be utilized to
compute an upper bound (see Section IV).

Notation: We write g = Ω(h) (or, equivalently, h = O(g))
to denote the existence of positive constants ci such that, for any
x > c2, the functions g and h: R → R satisfy g(x) ≥ c1h(x).
We write g = Θ(h), or more informally g ≈ h, if both g = Ω(h)
and g = O(h).

III. STRONGLY CONVEX QUADRATIC PROBLEMS

Consider a strongly convex quadratic objective function

f(x) = 1
2x

TQx− qTx (4)

whereQ is a symmetric positive-definite matrix and q is a vector.
Let f ∈ FL

m and let the eigenvalues λi of Q satisfy

L = λ1 ≥ λ2 ≥ · · · ≥ λn = m > 0.

In the absence of noise, the constant values of parameters α and
β provided in Table II yield linear convergence (with optimal
decay rates) to the globally optimal pointx� = Q−1q for all three
algorithms [50]. In the presence of additive white noise wt, we
derive analytical expressions for the variance amplification J of
algorithms (2) and demonstrate that J depends not only on the
algorithmic parameters α and β, but also on all eigenvalues of
the Hessian matrix Q. This should be compared and contrasted
to the optimal rate of linear convergence, which only depends on
κ := L/m, i.e., the ratio of the largest and smallest eigenvalues
of Q.

For constant α and β, algorithms (2) can be described by a
linear time-invariant (LTI) first-order recursion

ψt+1 = Aψt + σBwt

zt = Cψt (5)
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TABLE II
OPTIMAL PARAMETERS AND THE CORRESPONDING CONVERGENCE RATES FOR A STRONGLY CONVEX QUADRATIC OBJECTIVE

FUNCTION f ∈ FL
m WITH λmax(∇2f) = L AND λmin(∇2f) = m, AND κ := L/m [50, PROP. 1]

where ψt is the state, zt := xt − x� is the performance output,
and wt is a white stochastic input. In particular, choosing ψt :=
xt − x� for gradient descent and ψt := [(xt − x�)T (xt+1 −
x�)T ]T for accelerated algorithms yields state-space model (5)
with

A = I − αQ ,B = C = I

for gradient descent and

A =

[
0 I

−βI (1 + β)I − αQ

]

A =

[
0 I

−β(I − αQ) (1 + β)(I − αQ)

]
for the heavy-ball and Nesterov’s methods, respectively, with

BT = [0 I ] , C = [ I 0 ] .

Since wt is zero mean, we have E(ψt+1) = AE(ψt). Thus,
E(ψt) = At E(ψ0) and, for any stabilizing parameters α and β,
limt→∞ E(ψt) = 0, with the same linear rate as in the absence
of noise. Furthermore, it is well known that the covariance
matrix P t := E(ψt(ψt)T ) of the state vector satisfies the linear
recursion

P t+1 = AP tAT + σ2BBT (6a)

and that its steady-state limit

P := lim
t→∞ E

(
ψt(ψt)T

)
(6b)

is the unique solution to the algebraic Lyapunov equation [37]

P = APAT + σ2BBT . (6c)

For stable LTI systems, performance measure (3) simplifies to
the steady-state variance of the error in the optimization variable
zt := xt − x�

J = lim
t→∞

1

t

t∑
k=0

E
(‖zk‖2) = lim

t→∞ E
(‖zt‖2) (6d)

and it can be computed using either of the following two equiv-
alent expressions:

J = lim
t→∞

1

t

t∑
k=0

trace
(
Zk

)
= trace(Z) (6e)

whereZ = CPCT is the steady-state limit of the output covari-
ance matrix Zt := E(zt(zt)T ) = CP tCT .

We next provide analytical solution P to (6c) that depends on
the parametersα and β as well as on the spectrum of the Hessian
matrix Q. This allows us to explicitly characterize the variance

amplification J and quantify the impact of additive white noise
on the performance of first-order optimization algorithms.

A. Influence of the Eigenvalues of the Hessian Matrix

We use the modal decomposition of the symmetric matrix
Q = V ΛV T to bring A, B, and C in (5) into a block diag-
onal form, Â = diag (Âi),B̂ = diag (B̂i),Ĉ = diag (Ĉi), with
i = 1, . . . , n. Here, Λ = diag (λi) is the diagonal matrix of the
eigenvalues and V is the orthogonal matrix of the eigenvectors
of Q. More specifically, the unitary coordinate transformation

x̂t := V Txt, x̂� := V Tx�, ŵt := V Twt (7)

brings the state-space model of gradient descent into a diagonal
form with

ψ̂t
i = x̂ti − x̂�i , Âi = 1− αλi, B̂i = Ĉi = 1. (8a)

Similarly, for Polyak’s heavy-ball and Nesterov’s accelerated
methods, change of coordinates (7) in conjunction with a permu-
tation of variables, ψ̂t

i = [x̂ti − x̂�i x̂
t+1
i − x̂�i ]

T , respectively,
yields

Âi =

[
0 1
−β 1 + β − αλi

]
(8b)

Âi =

[
0 1

−β(1− αλi) (1 + β)(1− αλi)

]
(8c)

B̂T
i = [0 1 ] , Ĉi = [1 0 ] . (8d)

This block diagonal structure allows us to explicitly solve Lya-
punov equation (6c) for P and derive an analytical expression
for J in terms of the eigenvalues λi of the Hessian matrixQ and
the algorithmic parameters α and β. Namely, under coordinate
transformation (7) and a suitable permutation of variables, (6c)
can be brought into an equivalent set of equations

P̂i = ÂiP̂iÂ
T
i + σ2B̂iB̂

T
i , i = 1, . . . , n (9)

where P̂i is a scalar for the gradient descent method and a 2× 2
matrix for the accelerated algorithms. In Theorem 1, we use the
solution to these decoupled Lyapunov equations to express the
variance amplification as

J =
n∑

i=1

Ĵ(λi) :=
n∑

i=1

trace (ĈiP̂iĈ
T
i )

where Ĵ(λi) determines the contribution of the eigenvalue λi of
the matrix Q to the variance amplification. In what follows, we
use subscripts gd, hb, and na (e.g., Jgd, Jhb, and Jna) to denote
quantities that correspond to gradient descent (2a), heavy-ball
method (2b), and Nesterov’s accelerated method (2c).
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Theorem 1: For strongly convex quadratic problems, the
variance amplification of noisy first-order algorithms (2) with
any constant stabilizing parameters α and β is determined by
J =

∑n
i=1 Ĵ(λi), where λi is the ith eigenvalue ofQ = QT � 0

and the modal contribution to the variance amplification Ĵ(λ) is
given by

Ĵgd(λ) =
σ2

αλ (2− αλ)

Ĵhb(λ) =
σ2(1 + β)

αλ (1 − β) (2(1 + β)− αλ)

Ĵna(λ) =
σ2(1 + β(1− αλ))

αλ (1− β(1− αλ)) (2(1 + β)− (2β + 1)αλ)
.

Proof: See Appendix A. �
For strongly convex quadratic problems, Theorem 1 provides

exact expressions for variance amplification of the first-order
algorithms. These expressions not only quantify the dependence
of J on the algorithmic parametersα and β and the impact of the
largest and smallest eigenvalues, but also capture the effect of
all other eigenvalues of the Hessian matrix Q. We also observe
that the variance amplification J is proportional to σ2. Apart
from Section V, where we examine the role of parameters α
and β on acceleration and variance amplification, without loss
of generality, we choose σ = 1 in the rest of this article.

Remark 1: The performance measure J in (6d) quantifies
the steady-state variance of the iterates of first-order algorithms.
Robustness of noisy algorithms can also be evaluated using
alternative performance measures, e.g., the mean value of the
error in the objective function [46]

J ′ = lim
t→∞ E

(
(xt − x�)TQ(xt − x�)

)
. (10)

This measure of variance amplification can be characterized
using our approach by defining C = Q1/2 for gradient descent
and C = [Q1/2 0] for accelerated algorithms in the state-space
model (5). Furthermore, repeating the above procedure for the
modified performance output zt yields J ′ =

∑n
i=1 λiĴ(λi),

where the respective expressions for Ĵ(λi) are given in The-
orem 1.

B. Comparison for the Parameters That Optimize the
Convergence Rate

We next examine the robustness of first-order algorithms
applied to strongly convex quadratic problems for the parameters
that optimize the linear convergence rate (see Table II). For
these parameters, the eigenvalues of the matrix A are inside
the open unit disk, implying exponential stability of system (5).
We first use the expressions presented in Theorem 1 to compare
the variance amplification of the heavy-ball method to gradient
descent.

Theorem 2: Let the strongly convex quadratic objective func-
tion f in (4) satisfy λmax(Q) = L, λmin(Q) = m > 0, and let
κ := L/m be the condition number. For the optimal parameters
provided in Table II, the ratio between the variance amplification
of the heavy-ball method and gradient descent with equal values
of σ is given by

Jhb
Jgd

=
(
√
κ+ 1)4

8
√
κ(κ+ 1)

. (11)

Proof: For the parameters provided in Table II, we have
αhb = (1 + β)αgd, where β = (

√
κ− 1)2/(

√
κ+ 1)2 is the

momentum parameter for the heavy-ball method. It is now
straightforward to show that the modal contributions Ĵhb and Ĵgd
to the variance amplification of the iterates given in Theorem 1
satisfy

Ĵhb(λ)

Ĵgd(λ)
=

1

1− β2
=

(
√
κ+ 1)4

8
√
κ(κ+ 1)

∀λ ∈ [m,L]. (12)

Thus, the ratio Ĵhb(λ)/Ĵgd(λ) does not depend on λ and is only
a function of the condition number κ. Substitution of (12) into
J =

∑
i Ĵ(λi) yields relation (11). �

Theorem 2 establishes the linear relation between the variance
amplification of the heavy-ball algorithm Jhb and the gradient
descent Jgd. We observe that the ratio Jhb/Jgd only depends
on the condition number κ and that acceleration increases
variance amplification: for κ� 1, Jhb is larger than Jgd by
a factor of

√
κ. We next study the ratio between the variance

amplification of Nesterov’s accelerated method and gradient
descent. In contrast to the heavy-ball method, this ratio depends
on the entire spectrum of the Hessian matrix Q. The following
proposition, which examines the modal contributions Ĵna(λ) and
Ĵgd(λ) of Nesterov’s accelerated method and gradient descent,
is the key technical result that allows us to establish the largest
and smallest values that the ratio Jna/Jgd can take for a given
pair of extreme eigenvalues m and L of Q in Theorem 3.

Proposition 1: Let the strongly convex quadratic objective
function f in (4) satisfy λmax(Q) = L, λmin(Q) = m > 0, and
let κ := L/m be the condition number. For the optimal param-
eters provided in Table II, the ratio Ĵna(λ)/Ĵgd(λ) of modal
contributions to variance amplification of Nesterov’s method
and gradient descent is a decreasing function of λ ∈ [m,L].
Furthermore, for σ = 1, the function Ĵgd(λ) satisfies

max
λ∈[m,L]

Ĵgd(λ) = Ĵgd(m) = Ĵgd(L) =
(κ+ 1)2

4κ

min
λ∈[m,L]

Ĵgd(λ) = Ĵgd(1/α) = 1 (13a)

and the function Ĵna(λ) satisfies

max
λ∈[m,L]

Ĵna(λ) = Ĵna(m) =
κ̄2

(
κ̄ − 2

√
κ̄+ 2

)
32

(√
κ̄− 1

)3
min

λ∈[m,L]
Ĵna(λ) = Ĵna(1/α) = 1

Ĵna(L) =
9κ̄2

(
κ̄ + 2

√
κ̄− 2

)
32 (κ̄ − 1)

(
κ̄ −√

κ̄+ 1
) (

2
√
κ̄− 1

)
(13b)

where κ̄ := 3κ+ 1.
Proof: See Appendix A. �
For all three algorithms, Proposition 1 and Theorem 2 demon-

strate that the modal contribution to the variance amplification
of the iterates at the extreme eigenvalues of the Hessian matrix,
m and L, only depends on the condition number κ := L/m.
For gradient descent and the heavy-ball method, Ĵ achieves its
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largest value at m and L, i.e.,

max
λ∈[m,L]

Ĵgd(λ) = Ĵgd(m) = Ĵgd(L) = Θ(κ)

max
λ∈[m,L]

Ĵhb(λ) = Ĵhb(m) = Ĵhb(L) = Θ(κ
√
κ). (14a)

In contrast, for Nesterov’s method, (13b) implies a gap of Θ(κ)
between the boundary values

max
λ∈[m,L]

Ĵna(λ) = Ĵna(m) = Θ(κ
√
κ), Ĵna(L) = Θ(

√
κ).

(14b)
Remark 2: Theorem 1 provides explicit formulas for vari-

ance amplification of noisy algorithms (2) in terms of the eigen-
values λi of the Hessian matrix Q. Similarly, we can represent
the variance amplification in terms of the eigenvalues λ̂i of the
dynamic matrices Âi in (8). For gradient descent, λ̂i = 1− αλi,
and it is straightforward to verify that Jgd is determined by
the sum of reciprocals of distances of these eigenvalues to
the stability boundary, Jgd =

∑n
i=1 σ

2/(1− λ̂2
i ). Similarly, for

accelerated methods, we have,

J =

n∑
i=1

σ2(1 + λ̂iλ̂
′
i)

(1− λ̂iλ̂
′
i)(1− λ̂i)(1− λ̂′

i)(1 + λ̂i)(1 + λ̂′
i)

where λ̂i and λ̂′
i are the eigenvalues of Âi. For Nesterov’s method

with the parameters provided in Table II, the matrix Ân, which
corresponds to λn = m, admits a Jordan canonical form with
repeated eigenvalues λ̂n = λ̂′

n = 1− 2/
√
3κ+ 1. In this case,

Ĵna(m) = σ2(1 + λ̂2
n)/(1− λ̂2

n)
3, which should be compared

and contrasted to the above expression for gradient descent.
Furthermore, for both λ1 = L and λn = m, the matrices Â1

and Ân for the heavy-ball method with the parameters provided
in Table II have eigenvalues with algebraic multiplicity two and
incomplete sets of eigenvectors.

We next establish the range of values that Jna/Jgd can take.
Theorem 3: For the strongly convex quadratic objective

function f in (4) with x ∈ Rn, λmax(Q) = L, and λmin(Q) =
m > 0, the ratio between the variance amplification of Nes-
terov’s accelerated method and gradient descent, for the optimal
parameters provided in Table II and equal values of σ, satisfies

Jna
Jgd

≤ Ĵna(L) + (n − 1)Ĵna(m)

Ĵgd(L) + (n − 1)Ĵgd(m)
(15a)

Jna
Jgd

≥ Ĵna(m) + (n − 1)Ĵna(L)

Ĵgd(m) + (n − 1)Ĵgd(L)
. (15b)

Proof: See Appendix A. �
Theorem 3 provides tight upper and lower bounds on the ratio

between Jna and Jgd for strongly convex quadratic problems.
As shown in Appendix A, the lower bound is achieved for a
quadratic function in which the Hessian matrixQ has one eigen-
value at m and n− 1 eigenvalues at L, and the upper bound is
achieved whenQ has one eigenvalue atL and the remaining ones
atm. Theorem 3 in conjunction with Proposition 1 demonstrates
that for a fixed problem dimension n, Jna is larger than Jgd by
a factor of

√
κ for κ� 1.

This tradeoff is further highlighted in Theorem 4, which
provides tight bounds on the variance amplification of iterates in
terms of the problem dimension n and the condition number κ
for all three algorithms. To simplify the presentation, we first use

the explicit expressions for Ĵna(m) and Ĵna(L) in Proposition 1
to obtain the following upper and lower bounds on Ĵna(m) and
Ĵna(L) (see Appendix A)

(3κ+ 1)
3
2

32
≤ Ĵna(m) ≤ (3κ+ 1)

3
2

8
(16a)

9
√
3κ+ 1

64
≤ Ĵna(L) ≤ 9

√
3κ+ 1

8
. (16b)

Theorem 4: For the strongly convex quadratic objective
function f in (4) with x ∈ Rn, λmax(Q) = L, λmin(Q) = m >
0, and κ := L/m, the variance amplification of the first-order
optimization algorithms, with the parameters provided in Ta-
ble II and σ = 1, is bounded by

(κ− 1)2

2κ
+ n ≤ Jgd ≤ n(κ+ 1)2

4κ

Jhb ≤ n(κ+ 1)(
√
κ+ 1)4

32κ
√
κ

Jhb ≥ (
√
κ+ 1)4

8
√
κ(κ+ 1)

(
(κ− 1)2

2κ
+ n

)

Jna ≤ (n− 1)(3κ+ 1)
3
2

8
+

9
√
3κ+ 1

8

Jna ≥ (3κ+ 1)
3
2

32
+

9
√
3κ+ 1

64
+ n− 2. (17)

Proof: As shown in Proposition 1, the functions Ĵ(λ) for
gradient descent and Nesterov’s algorithm attain their largest and
smallest values over the interval [m,L] at λ = m and λ = 1/α,
respectively. Thus, fixing the smallest and largest eigenvalues,
the variance amplification J is maximized when the other n− 2
eigenvalues are all equal to m and is minimized when they are
all equal to 1/α. This combined with the explicit expressions
for Ĵgd(m), Ĵgd(L), and Ĵgd(1/α) in (13a) leads to the tight
upper and lower bounds for gradient descent. For the heavy-ball
method, the bounds follow from Theorem 2, and for Nesterov’s
algorithm, the bounds follow from (16). �

For problems with a fixed dimensionn and a condition number
κ� n, there is an Ω(

√
κ) difference in both upper and lower

bounds provided in Theorem 4 for the accelerated algorithms
relative to gradient descent. Even though Theorem 4 considers
only the values of α and β that optimize the convergence rate, in
Section V, we demonstrate that this gap is fundamental in that it
holds for any parameters that yield an accelerated convergence
rate. It is worth noting that both the lower and upper bounds
are influenced by the problem dimension n and the condition
number κ. For large-scale problems, there may be a subtle
relation betweenn andκ, and the established bounds may exhibit
different scaling trends. In Section VI, we identify a class of
quadratic optimization problems for which Jna scales in the
same way as Jgd for κ� 1 and n� 1.

Before we elaborate further on these issues, we provide two
illustrative examples that highlight the importance of the choice
of the performance metric in the robustness analysis of noisy
algorithms. It is worth noting that an O(κ) upper bound for
gradient descent and an O(κ2) upper bound for Nesterov’s
accelerated algorithm were established in [25]. Relative to this
upper bound for Nesterov’s method, the upper bound provided in
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Theorem 4 is tighter by a factor of
√
κ. Theorem 4 also provides

lower bounds, reveals the influence of the problem dimension
n, and identifies constants that multiply the leading terms in the
condition number κ. Moreover, in Section IV, we demonstrate
that similar upper bounds can be obtained for general strongly
convex objective functions with Lipschitz continuous gradients.

C. Examples

We next provide illustrative examples to 1) demonstrate the
agreement of our theoretical predictions with the results of
stochastic simulations and 2) contrast two natural performance
measures, namely the variance of the iterates J in (6d) and the
mean objective error J ′ in (10), for assessing robustness of noisy
optimization algorithms.

Example 1: Let us consider the quadratic objective function
in (4) with

Q =

[
L 0
0 m

]
, q =

[
0
0

]
. (18)

For all three algorithms, the performance measures J and J ′ are
given by

J = Ĵ(m) + Ĵ(L)

J ′ = mĴ(m) + LĴ(L)

= L
(

1
κ Ĵ(m) + Ĵ(L)

)
= m

(
Ĵ(m) + κĴ(L)

)
.

As shown in (14), Ĵ(m) and Ĵ(L) only depend on the condition
number κ, and the variance amplification of the iterates satisfies

Jgd = Θ(κ), Jhb = Θ(κ
√
κ), Jna = Θ(κ

√
κ). (19a)

In contrast,J ′ also depends onm andL. In particular, it is easy to
verify the following relations for two scenarios that yieldκ� 1.

1) For m� 1 and L = O(1), we have

J ′
gd = Θ(κ), J ′

hb = Θ(κ
√
κ), J ′

na = Θ(
√
κ). (19b)

2) For L� 1 and m = O(1), we have

J ′
gd = Θ(κ2), J ′

hb = Θ(κ2
√
κ), J ′

na = Θ(κ
√
κ).

(19c)
Relation (19a) reveals the detrimental impact of acceleration

on the variance of the optimization variable. In contrast, (19b)
and (19c) show that, relative to gradient descent, the heavy-ball
method increases the mean error in the objective function, while
Nesterov’s method reduces it. Thus, if the mean value of the error
in the objective function is to be used to assess performance of
noisy algorithms, one can conclude that Nesterov’s method sig-
nificantly outperforms gradient descent both in terms of conver-
gence rate and robustness to noise. However, this performance
metric fails to capture large variance of the mode associated with
the smallest eigenvalue of the matrixQ in Nesterov’s algorithm.
Theorem 2 and Proposition 1 show that the modal contribu-
tions to the variance amplification of the iterates for gradient
descent and the heavy-ball method are balanced atm andL, i.e.,
Ĵgd(m) = Ĵgd(L) = Θ(κ) and Ĵhb(m) = Ĵhb(L) = Θ(κ

√
κ).

In contrast, for Nesterov’s method, there is a Θ(κ) gap between
Ĵna(m) = Θ(κ

√
κ) and Ĵna(L) = Θ(

√
κ). While the perfor-

mance measure J ′ reveals a superior performance of Nesterov’s
algorithm at large condition numbers, it fails to capture the neg-
ative impact of acceleration on the variance of the optimization
variable (see Fig. 1 for an illustration).

Fig. 1. Ellipsoids {z|zTZ−1z ≤ 1} associated with the steady-state
covariance matrices Z = CPCT of the performance outputs zt = xt −
x� (top row) and zt = Q1/2(xt − x�) (bottom row) for algorithms (2) with
the parameters provided in Table II for the matrix Q given in (18) with
m � L = O(1). The horizontal and vertical axes show the eigenvectors
[ 1 0]T and [ 0 1]T associated with the eigenvalues Ĵ(L) and Ĵ(m)

(top row) and Ĵ ′(L) and Ĵ ′(m) (bottom row) of the respective output
covariance matrices Z.

Fig. 2. Performance outputs zt = xt (top row) and zt = Q1/2xt (bot-
tom row) resulting from 105 iterations of noisy first-order algorithms (2)
with the parameters provided in Table II. Strongly convex problem
with f(x) = 0.5x2

1 + 0.25× 10−4 x2
2 (κ = 2× 104) is solved using algo-

rithms with additive white noise and zero initial conditions. (a) Gradient
descent. (b) Heavy-ball. (c) Nesterov.

Fig. 2 shows the performance outputs zt = xt and zt =
Q1/2xt resulting from 105 iterations of noisy first-order al-
gorithms with the optimal parameters provided in Table II for
the strongly convex objective function f(x) = 0.5x21 + 0.25×
10−4 x22 (κ = 2× 104). Although Nesterov’s method exhibits
good performance with respect to the error in the objective func-
tion (performance measure J ′), the plots in the first row illustrate
detrimental impact of noise on both accelerated algorithms with
respect to the variance of the iterates (performance measure J).
In particular, we observe that: 1) for gradient descent and the
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Fig. 3. (1/t)
∑t

k=0
‖zk‖2 for the performance output zt in Exam-

ple 2. Top row: the thick blue (gradient descent), black (heavy-ball),
and red (Nesterov’s method) lines mark variance obtained by aver-
aging results of 20 stochastic simulations. Bottom row: comparison
between results obtained by averaging outcomes of twenty stochas-
tic simulations (thick lines) with the corresponding theoretical values
(1/t)

∑t

k=0
trace (CP kCT ) (dashed lines) resulting from the Lyapunov

equation (6a). (a) zt = xt. (b) zt = Q1/2xt.

heavy-ball method, the iterates xt are scattered uniformly along
the eigendirections of the Hessian matrix Q and acceleration
increases variance equally along all directions; and 2) relative to
gradient descent, Nesterov’s method exhibits larger variance in
the iteratesxt along the direction that corresponds to the smallest
eigenvalue λmin(Q).

Example 2: Fig. 3 compares the results of 20 stochastic sim-
ulations for a strongly convex quadratic objective function (4)
with q = 0 and a Toeplitz matrix Q ∈ R50×50 with the first row
[2− 1 0 · · · 0 0]T . This figure shows the time dependence of the
variance of the performance outputs zt = xt and zt = Q1/2xt

for the algorithms subject to additive white noise with zero
initial conditions. The plots further demonstrate that the mean
error in the objective function does not capture detrimental
impact of noise on the variance of the iterates for Nesterov’s
algorithm. The bottom row also compares variance obtained by
averaging outcomes of twenty stochastic simulations with the
corresponding theoretical values resulting from the Lyapunov
equations.

IV. GENERAL STRONGLY CONVEX PROBLEMS

In this section, we extend our results to the class FL
m of

m-strongly convex objective functions with L-Lipschitz con-
tinuous gradients. While a precise characterization of noise
amplification for general problems is challenging because of the
nonlinear dynamics, we employ tools from robust control theory
to obtain meaningful upper bounds. Our results utilize the theory
of integral quadratic constraints [51], a convex control-theoretic
framework that was recently used to analyze optimization al-
gorithms [50] and study convergence and robustness of the
first-order methods [52]–[55]. We establish analytical upper

bounds on the mean-squared error of the iterates (3) for gradient
descent (2a) and Nesterov’s accelerated (2c) methods. Since
there are no known accelerated convergence guarantees for the
heavy-ball method when applied to general strongly convex
functions, we do not consider it in this section.

We first exploit structural properties of the gradient and em-
ploy quadratic Lyapunov functions to formulate a semidefinite
programming problem (SDP) that provides upper bounds on
J in (3). While quadratic Lyapunov functions yield tight upper
bounds for gradient descent, they fail to provide any upper bound
for Nesterov’s method for large condition numbers (κ > 100).
To overcome this challenge, we present a modified semidefinite
program that uses more general Lyapunov functions, which are
obtained by augmenting standard quadratic terms with the objec-
tive function. This type of generalized Lyapunov functions has
been introduced in [53] and [56] and used to study convergence
of optimization algorithms for nonstrongly convex problems.
We employ a modified SDP to derive meaningful upper bounds
on J in (3) for Nesterov’s method as well.

We note that algorithms (2) are invariant under translation,
i.e., if we let x̃ := x− x̄ and g(x̃) := f(x̃+ x̄), then (2c), for
example, satisfies

x̃t+2 = x̃t+1 + β(x̃t+1 − x̃t)−
α∇g (x̃t+1 + β(x̃t+1 − x̃t)

)
+ σwt.

Thus, in what follows, without loss of generality, we assume that
x� = 0 is the unique minimizer of (1).

A. Approach Based on Contraction Mappings

Before we present our approach based on LMIs, we pro-
vide a more intuitive approach that can be used to examine
noise amplification of gradient descent. Let ϕ: Rn → Rn be
a contraction mapping, i.e., there exists a positive scalar η < 1
such that ‖ϕ(x)− ϕ(y)‖ ≤ η‖x− y‖ for all x, y ∈ Rn, and let
x� = 0 be the unique fixed point of ϕ, i.e, ϕ(0) = 0. For the
noisy recursion xt+1 = ϕ(xt) + σwt, where wt is a zero-mean
white noise with identity covariance and E((wt)Tϕ(xt)) = 0,
the contractiveness of ϕ implies

E(‖xt+1‖2) = E(‖ϕ(xt) + σwt‖2) ≤ η2 E(‖xt‖2) + nσ2.

Since η < 1, this relation yields

lim
t→∞ E(‖xt‖2) ≤ nσ2

1− η2
.

If η := max{|1− αm|, |1− αL|} < 1, the map ϕ(x) := x−
α∇f(x) is a contraction [57]. Thus, for the conventional stepsize
α = 1/L we have η = 1− 1/κ, and the bound becomes

lim
t→∞ E(‖xt‖2) ≤ nσ2

1− η2
=
nσ2κ2

2κ− 1
= nΘ(κ).

In the next section, we show that this upper bound is indeed
tight for the class of functions FL

m. While this approach yields
a tight upper bound for gradient descent, it cannot be used for
Nesterov’s method (because it is not a contraction).

B. Approach Based on LMIs

For any function f ∈ FL
m, the nonlinear mapping Δ: Rn →

Rn

Δ(y) := ∇f(y)−my
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Fig. 4. Block diagram of system (22a).

satisfies the quadratic inequality [50, Lemma 6][
y − y0

Δ(y) − Δ(y0)

]T
Π

[
y − y0

Δ(y) − Δ(y0)

]
≥ 0 (20)

for all y, y0 ∈ Rn, where the matrix Π is given by

Π :=

[
0 (L − m)I

(L − m)I −2I

]
. (21)

We can bring algorithms (2) with constant parameters into a
time-invariant state-space form

ψt+1 = Aψt + σBww
t +Buu

t[
zt

yt

]
=

[
Cz

Cy

]
ψt

ut = Δ(yt) (22a)

that contains a feedback interconnection of linear and nonlinear
components. Fig. 4 illustrates the block diagram of system (22a),
where ψt is the state, wt is a white stochastic noise, zt is the
performance output, and ut is the output of the nonlinear term
Δ(yt). In particular, if we let

ψt :=

[
xt

xt+1

]
, zt := xt, yt := −βxt + (1 + β)xt+1

and define the corresponding matrices as

A =

[
0 I

−β(1− αm)I (1 + β)(1− αm)I

]

Bw =

[
0
I

]
, Bu =

[
0

−αI
]

Cz = [ I 0 ] , Cy = [−β I (1 + β)I ] (22b)

then (22a) represents Nesterov’s method (2c). For gradient de-
scent (2a), we can alternatively useψt = zt = yt := xt with the
corresponding matrices

A = (1− αm)I, Bw = I, Bu = −αI
Cz = Cy = I. (22c)

In what follows, we demonstrate how property (20) of the
nonlinear mapping Δ allows us to obtain upper bounds on J
when system (22a) is driven by the white stochastic inputwt with
zero mean and identity covariance. Lemma 1 uses a quadratic
Lyapunov function of the form V (ψ) = ψTXψ and provides
upper bounds on the steady-state second-order moment of the
performance output zt in terms of solutions to a certain LMI.
This approach yields a tight upper bound for gradient descent.

Lemma 1: Let the nonlinear function u = Δ(y) satisfy the
quadratic inequality [

y
u

]T
Π

[
y
u

]
≥ 0 (23)

for some matrix Π, let X be a positive-semidefinite matrix, and
let λ be a nonnegative scalar such that system (22a) satisfies[

ATX A−X + CT
z Cz ATX Bu

BT
u X A BT

u X Bu

]
+

λ

[
CT

y 0
0 I

]
Π

[
Cy 0
0 I

]
� 0. (24)

Then, the steady-state second-order moment J of the perfor-
mance output zt in (22a) is bounded by

J ≤ σ2trace (BT
wXBw).

Proof: See Appendix B. �
For Nesterov’s accelerated method with the parameters pro-

vided in Table I, computational experiments show that LMI (24)
becomes infeasible for large values of the condition number
κ. Thus, Lemma 1 does not provide sensible upper bounds
on J for Nesterov’s algorithm. This observation is consistent
with the results of [50], where it was suggested that analyzing
the convergence rate requires the use of additional quadratic
inequalities, apart from (20), to further tighten the constraints on
the gradient ∇f and reduce conservativeness. In what follows,
we build on the results of [53] and present an alternative LMI
in Lemma 2 that is obtained using a Lyapunov function of
the form V (ψ) = ψTXψ + f([ 0I ]ψ), where X is a positive-
semidefinite matrix and f is the objective function in (1). Such
Lyapunov functions have been used to study convergence of
optimization algorithms in [56]. The resulting approach allows
us to establish an orderwise tight analytical upper bound on J
for Nesterov’s accelerated method.

Lemma 2: Let the matrix M(m,L;α, β) be defined as

M := NT
1

[
LI I
I 0

]
N1 + NT

2

[−mI I
I 0

]
N2

where

N1 :=

[
αmβ I −αm(1 + β) I −α I
−mβ I m(1 + β) I I

]

N2 :=

[ −β I β I 0
−mβ I m(1 + β) I I

]
.

Consider state-space model (22a), (22b) for algorithm (2c), and
letΠ be given by (21). Then, for any positive-semidefinite matrix
X and scalars λ1 ≥ 0 and λ2 ≥ 0 that satisfy[

ATX A−X + CT
z Cz ATX Bu

BT
u X A BT

u X Bu

]
+

λ1

[
CT

y 0
0 I

]
Π

[
Cy 0
0 I

]
+ λ2M � 0 (25)

the steady-state second-order moment J of the performance
output zt in (22a) is bounded by

J ≤ σ2
(
nL λ2 + trace (BT

wXBw)
)
. (26)

Proof: See Appendix B. �
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Remark 3: Since LMI (25) simplifies to (24) by setting
λ2 = 0, Lemma 2 represents a relaxed version of Lemma 1.
This modification is the key enabler to establishing tight upper
bound on J for Nesterov’s method.

The upper bounds provided in Lemmas 1 and 2 are propor-
tional to σ2. In what follows, to make a connection between
these bounds and our analytical expressions for the variance
amplification in the quadratic case (see Section III), we again
set σ = 1. The best upper bound on J that can be obtained
using Lemma 2 is given by the optimal objective value of the
semidefinite program

minimize
X,λ1,λ2

nL λ2 + trace (BT
wXBw)

subject to LMI (25), X � 0, λ1 ≥ 0, λ2 ≥ 0. (27)

For system matrices (22b), LMI (25) is of size 3n× 3n, where
xt ∈ Rn. However, if we impose the additional constraint that
the matrix X has the same block structure as A

X =

[
x1I x0I
x0I x2I

]

for some scalars x1, x2, and x0, then using appropriate permu-
tation matrices, we can simplify (24) into an LMI of size 3× 3.
Furthermore, imposing this constraint comes without loss of
generality. In particular, the optimal objective value of prob-
lem (27) does not change if we require X to have this structure;
see [50, Sec. 4.2] for a discussion of this lossless dimensionality
reduction for LMI constraints with similar structure.

In Theorem 5, we use Lemmas 1 and 2 to establish tight upper
bounds on Jgd and Jna for all f ∈ FL

m.
Theorem 5: For gradient descent and Nesterov’s accelerated

method with the parameters provided in Table I and σ = 1, the
performance measures Jgd and Jna of the error xt − x� ∈ Rn

satisfy

sup
f∈FL

m

Jgd = qgd, qna ≤ sup
f∈FL

m

Jna ≤ 4.08 qna

where

qgd =
nκ2

2κ− 1
= nΘ(κ)

qna =
nκ2 (2κ− 2

√
κ+ 1)

(2
√
κ− 1)

3 = nΘ(κ
3
2 )

and κ := L/m is the condition number of the set FL
m.

Proof: See Appendix B. �
The variance amplification of gradient descent and Nesterov’s

method for f(x) = m
2 x

Tx in FL
m is determined by qgd and qna,

respectively, and these two quantities can be obtained using
Theorem 1. In Theorem 5, we use this strongly convex quadratic
objective function to certify the accuracy of the upper bounds on
sup J for all f ∈ FL

m. In particular, we observe that the upper
bound is exact for gradient descent and that it is within a 4.08
factor of the optimal for Nesterov’s method.

For strongly convex objective functions with the condition
number κ, Theorem 5 proves that gradient descent outperforms
Nesterov’s accelerated method in terms of the largest noise
amplification by a factor of

√
κ. This uncovers the fundamental

performance limitation of Nesterov’s accelerated method when
the gradient evaluation is subject to additive stochastic uncer-
tainties.

V. TUNING OF ALGORITHMIC PARAMETERS

The parameters provided in Table II yield the optimal con-
vergence rate for strongly convex quadratic problems. For these
specific values, Theorem 4 establishes upper and lower bounds
on the variance amplification that reveal the negative impact
of acceleration. However, it is relevant to examine whether
the parameters can be designed to provide acceleration while
reducing the variance amplification.

While the convergence rate solely depends on the extreme
eigenvalues m = λmin(Q) and L = λmax(Q) of the Hessian
matrix Q, variance amplification is influenced by the entire
spectrum ofQ and its minimization is challenging as it requires
the use of all eigenvalues. In this section, we first consider the
special case of eigenvalues being symmetrically distributed over
the interval [m,L] and demonstrate that for gradient descent and
the heavy-ball method, the parameters provided in Table II yield
a variance amplification that is within a constant factor of the
optimal value. As we demonstrate in Section VI, symmetric
distribution of the eigenvalues is encountered in distributed
consensus over undirected torus networks. We also consider
the problem of designing parameters for objective functions in
which the problem size satisfies n� κ and establish a tradeoff
between convergence rate and variance amplification. More
specifically, we show that for a bounded problem dimension n
and any accelerating pair of parameters α and β, i.e., α and
β for which the corresponding rate of convergence satisfies
ρ = 1− c/

√
κ for some constant c, the variance amplification

of accelerated methods is larger than that of gradient descent by
a factor of Ω(

√
κ).

A. Tuning of Parameters Using the Whole Spectrum

LetL = λ1 ≥ λ2 ≥ · · · ≥ λn = m > 0be the eigenvalues of
the Hessian matrixQ of the strongly convex quadratic objective
function in (4). Algorithms (2) converge linearly in the expected
value to the optimizer x� with the rate

ρ := max
i
ρ̂(λi) (28)

where ρ̂(λi) is the spectral radius of the matrix Âi given by (8).
For any scalar c > 0 and fixed σ, let

(α�
hb(c), β

�
hb(c)) := argmin

α,β
Jhb(α, β)

subject to ρhb ≤ 1− c√
κ

(29a)

for the heavy-ball method, and

α�
gd(c) := argmin

α
Jgd(α)

subject to ρgd ≤ 1− c

κ
(29b)

for gradient descent, where the expression for the variance
amplification J is provided in Theorem 1. Here, the constraints
enforce a standard rate of linear convergence for gradient descent
and an accelerated rate of linear convergence for the heavy-
ball method parameterized with the constant c. Obtaining a
closed-form solution to (29) is challenging because J depends
on all eigenvalues of the Hessian matrix Q. Herein, we focus
on objective functions for which the spectrum of Q is symmet-
ric, i.e., for any eigenvalue λ, the corresponding mirror image
λ′ := L+m− λ with respect to 1

2 (L+m) is also an eigenvalue
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with the same algebraic multiplicity. For this class of problems,
Theorem 6 demonstrates that the parameters provided in Table II
for gradient descent and the heavy-ball method yield variance
amplification that is within a constant factor of the optimal.

Theorem 6: For any scalar c > 0 and fixed σ, there exist
constants c1 ≥ 1 and c2 > 0 such that for any strongly con-
vex quadratic objective function in which the spectrum of the
Hessian matrix Q is symmetrically distributed over the interval
[m,L] with κ := L/m > c1, we have

Jgd(α
�
gd(c)) ≥ 1

2
Jgd(αgd)

Jhb(α
�
hb(c), β

�
hb(c)) ≥ c2 Jhb(αhb, βhb)

where parameters αgd and (αhb, βhb) are provided in Table II,
whereas α�

gd(c) and (α�
hb(c), β

�
hb(c)) solve (29).

Proof: See Appendix C. �
For strongly convex quadratic objective functions with sym-

metric spectrum of the Hessian matrix over the interval [m,L],
Theorem 6 shows that the variance amplifications of gradient
descent and the heavy-ball method with the parameters provided
in Table II are within constant factors of the optimal values. As
we illustrate in Section VI, this class of problems is encountered
in distributed averaging over noisy undirected networks. Com-
bining this result with the lower bound on Jhb(αhb, βhb) and the
upper bound on Jgd(αgd) established in Theorem 4, we see that
regardless of the choice of parameters, there is a fundamental
gap of Ω(

√
κ) between Jhb and Jgd as long as we require an

accelerated rate of convergence.

B. Fundamental Lower Bounds

We next establish lower bounds on the variance amplification
of accelerated methods that hold for any pair of α and β for
strongly convex quadratic problems with κ� 1. In particular,
we show that the variance amplification of accelerated algo-
rithms is lower bounded by Ω(κ3/2) irrespective of the choice
of α and β.

The next theorem establishes a fundamental tradeoff between
the convergence rate and variance amplification for the heavy-
ball method.

Theorem 7: For strongly convex quadratic problems with
any stabilizing parameters α > 0 and 0 < β < 1 and with a
fixed noise magnitude σ, the heavy-ball method with the linear
convergence rate ρ satisfies

Jhb
1− ρ

≥ σ2

(
κ+ 1

8

)2

.

Furthermore, if σ = α, i.e., when the only source of uncertainty
is a noisy gradient, we have

Jhb
1− ρ

≥
( κ

8L

)2

.

Proof: See [58]. �
To gain additional insight, let us consider two special cases:

1) for α = 1/L and β → 0+, we obtain a gradient descent
algorithm, for which 1− ρ = Θ(1/κ) and J = Θ(κ); and 2) for
the heavy-ball method with the parameters provided in Table II,
we have 1− ρ = Θ(1/

√
κ) and J = Θ(κ

√
κ). Thus, in both

cases, Jhb/(1− ρ) = Ω(κ2). Theorem 7 shows that this lower
bound is fundamental, and it therefore quantifies the tradeoff
between the convergence rate and the variance amplification of

the heavy-ball method for any choice of parameters α and β.
It is also worth noting that the lower bound for σ = α depends
on the largest eigenvalue L of the Hessian matrix Q. Thus, this
bound is meaningful when the value of L is uniformly upper
bounded. This scenario occurs in many applications, including
consensus over undirected tori networks (see Section VI).

While we are not able to show a similar lower bound for Nes-
terov’s method, in the next theorem, we establish an asymptotic
lower bound on the variance amplification that holds for any
pair of accelerating parameters (α, β) for both Nesterov’s and
heavy-ball methods.

Theorem 8: For a strongly convex quadratic objective func-
tion with condition number κ, let c > 0 be a constant such that
either Nesterov’s algorithm or the heavy-ball method with some
(possibly problem dependent) parameters α > 0 and 0 < β < 1
converges linearly with a rateρ ≤ 1− c/

√
κ. Then, for any fixed

noise magnitude σ, we have

J/σ2 = Ω(κ
3
2 ).

Furthermore, if σ = α, i.e., when the only source of uncertainty
is a noisy gradient, we have

J = Ω
(
κ

3
2 /L2

)
.

Proof: For the heavy-ball method, the result follows from
combining Theorem 7 with the inequality 1− ρ ≥ c/

√
κ. For

Nesterov’s method, see [58]. �
For problems with n� κ, we recall that the variance ampli-

fication of gradient descent with conventional values of parame-
ters scales asO(κ) (see Theorem 5). Irrespective of the choice of
α and β, this result in conjunction with Theorem 8 demonstrates
that acceleration cannot be achieved without increasing the
variance amplification J by a factor of Ω(

√
κ).

VI. APPLICATION TO DISTRIBUTED COMPUTATION OVER

UNDIRECTED NETWORKS

Distributed computation over networks has received signifi-
cant attention in optimization, control systems, signal process-
ing, communications, and machine learning communities. In
this problem, the goal is to optimize an objective function (e.g.,
for the purpose of training a model) using multiple processing
units that are connected over a network. Clearly, the structure
of the network (e.g., node dynamics and network topology)
may impact the performance (e.g., convergence rate and noise
amplification) of any optimization algorithm. As a first step
toward understanding the impact of the network structure on
performance of noisy first-order optimization algorithms, in this
section, we examine the standard distributed consensus problem.

The consensus problem arises in applications ranging from
social networks, to distributed computing networks, to cooper-
ative control in multiagent systems. In the simplest setup, each
node updates a scalar value using the values of its neighbors such
that they all agree on a single consensus value. Simple updating
strategies of this kind can be obtained by applying a first-order
algorithm to the convex quadratic problem

minimize
x

1

2
xTLx (30)

where L = LT ∈ Rn×n is the Laplacian matrix of the graph
associated with the underlying undirected network and x ∈ Rn

is the vector of node values.
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The graph Laplacian matrix L � 0 has a nontrivial null space
that consists of the minimizers of problem (30). In the absence of
noise, for gradient descent and both of its accelerated variants, it
is straightforward to verify that the projections vt of the iterates
xt onto the null space of L remain constant (vt = v0, for all
t) and also that xt converges linearly to v0. In the presence of
additive noise, however, vt experiences a random walk, which
leads to an unbounded variance of xt as t→ ∞. Instead, as
described in [38], the performance of algorithms in this case can
be quantified by examining J̄ := limt→∞ E(‖xt − vt‖2). For
connected networks, the null space of L is given by N (L) =
{c1 | c ∈ R} and

J̄ = lim
t→∞ E

(‖xt − (1Txt/n)1‖2) (31)

quantifies the mean-squared deviation from the network average,
where 1 denotes the vector of all ones, i.e., 1 := [1 · · · 1]T .
Finally, it is straightforward to show that J̄ can also be computed
using the formulas in Theorem 1 by summing over the nonzero
eigenvalues of L.

In what follows, we consider a class of networks whose
structure allows for the explicit evaluation of the eigenvalues
of the Laplacian matrix L. For d-dimensional torus networks,
fundamental performance limitations of standard consensus al-
gorithms in continuous time were established in [39], but it
remains an open question whether gradient descent and its ac-
celerated variants suffer from these limitations. We utilize such
torus networks to demonstrate that standard gradient descent
exhibits the same scaling trends as consensus algorithms studied
in [39] and that, in lower spatial dimensions, acceleration always
increases variance amplification.

A. Explicit Formulas for d-Dimensional Torus Networks

We next examine the asymptotic scaling trends of the per-
formance metric J̄ given by (31) for large problem dimensions
n� 1 and highlight the subtle influence of the distribution of the
eigenvalues ofL on the variance amplification for d-dimensional
torus networks. Tori with nearest neighbor interactions general-
ize one-dimensional rings to higher spatial dimensions. Let Zn0

denote the group of integers modulo n0. A d-dimensional torus
Td
n0

consists of n := nd0 nodes denoted by va where a ∈ Zd
n0

and the set of edges {{vavb}|‖a− b‖ = 1 mod n0}; nodes va
and vb are neighbors if and only if a and b differ exactly at
a single entry by one. For example, T 1

n0
denotes a ring with

n = n0 nodes and T 5
n0

denotes a five-dimensional torus with
n = n50 nodes.

The multidimensional discrete Fourier transform can be used
to determine the eigenvalues of the Laplacian matrix L of a
d-dimensional torus Td

n0
as

λi =

d∑
l=1

2
(
1− cos 2πil

n0

)
, il ∈ Zn0

(32)

where i := (i1, . . . , id) ∈ Zd
n0

. We note that λ0 = 0 is the only
zero eigenvalue of L with the eigenvector 1 and that all other
eigenvalues are positive. Let κ := λmax/λmin be the ratio of the
largest and smallest nonzero eigenvalues ofL. A key observation
is that, for n0 � 1,

κ = Θ(
2

1− cos(2π/n0)
) = Θ(n20) = Θ(n2/d). (33)

This is because λmin = 2d(1− cos(2π/n0)) goes to zero as
n0 → ∞, and the largest eigenvalue of L, λmax = 2d(1−
cos(2π�n0

2 �/n0)), is equal to 4d for even n0, and it approaches
4d from below for odd n0.

As aforementioned, the performance metric J̄ can be obtained
by

J̄ =
∑

0 �=i∈Zd
n0

Ĵ(λi)

where Ĵ(λ) for each algorithm is determined in Theorem 1
and λi are the nonzero eigenvalues of L. The next theorem
characterizes the asymptotic value of the network-size normal-
ized mean-squared deviation from the network average, J̄/n,
for a fixed spatial dimension d and condition number κ� 1.
This result is obtained using analytical expression (32) for the
eigenvalues of the Laplacian matrix L.

Theorem 9: Let L ∈ Rn×n be the graph Laplacian of the
d-dimensional undirected torus Td

n0
with n = nd0 � 1 nodes.

For convex quadratic optimization problem (30), the network-
size normalized performance metric J̄/n of noisy first-order
algorithms, with the parameters provided in Table II and σ = 1,
is determined by

d = 1 d = 2 d = 3 d = 4 d = 5

GD Θ(
√
κ) Θ(log κ) Θ(1) Θ(1) Θ(1)

NA Θ(κ) Θ(
√
κ log κ) Θ(κ

1
4 ) Θ(log κ) Θ(1)

HB Θ(κ) Θ(
√
κ log κ) Θ(

√
κ) Θ(

√
κ) Θ(

√
κ)

where κ = Θ(n2/d) is the condition number of L given
in (33).

Proof: See Appendix D. �
Theorem 9 demonstrates that the variance amplification of

gradient descent is equivalent to that of the standard consensus
algorithm studied in [39] and that, in lower spatial dimensions,
acceleration always negatively impacts the performance of noisy
algorithms. Our results also highlight the subtle influence of the
distribution of the eigenvalues ofLon the variance amplification.
For rings (i.e., d = 1), lower bounds provided in Theorem 4
capture the trends that our detailed analysis based on the dis-
tribution of the entire spectrum of L reveals. In higher spatial
dimensions, however, the lower bounds that are obtained using
only the extreme eigenvalues of L are conservative. Similar
conclusion can be made about the upper bounds provided in
Theorem 4. This observation demonstrates that the naïve bounds
that result only from the use of the extreme eigenvalues can be
overly conservative.

We also note that gradient descent significantly outperforms
Nesterov’s accelerated algorithm in lower spatial dimensions.
In particular, while J̄/n becomes network size independent
for d = 3 for gradient descent, Nesterov’s algorithm reaches
“critical connectivity” only for d = 5. In contrast, in any spatial
dimension, there is no network-size-independent upper bound
on J̄/n for the heavy-ball method. These conclusions could not
have been reached without performing an in-depth analysis of
the impact of all eigenvalues on performance of noisy networks
with n� 1 and κ� 1.

VII. CONCLUDING REMARKS

We study the robustness of noisy first-order algorithms for
smooth, unconstrained, strongly convex optimization problems.
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Even though the underlying dynamics of these algorithms are
in general nonlinear, we establish upper bounds on noise am-
plification that are accurate up to constant factors. For quadratic
objective functions, we provide analytical expressions that quan-
tify the effect of all eigenvalues of the Hessian matrix on vari-
ance amplification. We use these expressions to establish lower
bounds demonstrating that although the acceleration techniques
improve the convergence rate, they significantly amplify noise
for problems with large condition numbers. In problems of
bounded dimension n� κ, the noise amplification increases
from O(κ) to Ω(κ3/2) when moving from standard gradient
descent to accelerated algorithms. We specialize our results
to the problem of distributed averaging over noisy undirected
networks and also study the role of network size and topology
on robustness of accelerated algorithms. Future research direc-
tions include 1) extension of our analysis to multiplicative and
correlated noise and 2) robustness analysis of broader classes of
optimization algorithms.

APPENDIX A
QUADRATIC PROBLEMS

Proof of Theorem 1: For gradient descent, Âi = 1− αλi

and B̂i = 1 are scalars, and the solution to (9) is given by

P̂i := σ2pi =
σ2

1− (1− αλi)2
=

σ2

αλi(2− αλi)
.

For the accelerated methods, we note that for any Âi and B̂i of
the form

Âi =

[
0 1
ai bi

]
, B̂i =

[
0
1

]

the solution P̂i to Lyapunov equation (9) is given by

P̂i = σ2

[
pi bipi/(1− ai)

bipi/(1− ai) pi

]

where

pi :=
ai − 1

(ai + 1)(bi + ai − 1)(bi − ai + 1)
. (34)

The parameters ai and bi for Nesterov’s algorithm are {ai =
−β(1− αλi); bi = (1 + β)(1− αλi)}, and for the heavy-ball
method, we have {ai = −β; bi = 1 + β − αλi}. Now, since
Ĉi = 1 for gradient descent and Ĉi = [1 0] for the accelerated
algorithms, it follows that for all three algorithms, we have
Ĵ(λi) := trace (ĈiP̂iĈ

T
i ) = σ2pi.Finally, if we use the expres-

sion for pi for gradient descent and substitute for ai and bi in (34)
for the accelerated algorithms, we obtain the expressions for Ĵ
in the statement of the theorem. �

Proof of Proposition 1: See [58]. �
Proof of Theorem 3: From Proposition 1, it follows that

Ĵna(L)

Ĵgd(L)
≤ Ĵna(λi)

Ĵgd(λi)
≤ Ĵna(m)

Ĵgd(m)
(35a)

for all λi and

n−1∑
i=1

Ĵgd(λi) ≤ (n− 1)Ĵgd(m) = (n− 1)Ĵgd(L). (35b)

For the upper bound, we have

Jna
Jgd

=

∑n
i=1 Ĵna(λi)∑n
i=1 Ĵgd(λi)

≤
Ĵna(L) +

Ĵna(m)

Ĵgd(m)

∑n−1
i=1 Ĵgd(λi)

Ĵgd(L) +
∑n−1

i=1 Ĵgd(λi)

≤ Ĵna(L) + (n − 1)Ĵna(m)

Ĵgd(L) + (n − 1)Ĵgd(m)

where the first inequality follows from (35a). The second in-
equality can be verified by multiplying both sides with the prod-
uct of the denominators and using Ĵgd(m) = Ĵgd(L), Ĵna(m) ≥
Ĵna(L), and (35b). The lower bound follows from a similar
argument. �

Proof of the bounds in (16): See [58]. �

APPENDIX B
GENERAL STRONGLY CONVEX PROBLEMS

Proof of Lemma 1: Let us define the positive-semidefinite
function V (ψ) := ψTXψ, and let η := [ψTuT ]T . Using (23)
and LMI (24), we can write

‖zt‖2 = (ηt)T
[
CT

z Cz 0
0 0

]
ηt ≤ −λ

[
yt

ut

]T
Π

[
yt

ut

]
+

(ηt)T
([

X 0
0 0

]
−
[
AT

BT
u

]
X

[
AT

BT
u

]T )
ηt

≤ V (ψt) − V (ψt+1) + 2σ(ψt)TATX Bw w
t+

σ2(wt)TBT
w X Bw w

t + 2σ(ut)TBT
u X Bw w

t.

Since wt is a zero-mean white input with identity covariance,
which is independent of ut and xt, if we take the average
of the above inequality over t and expectation over different
realizations of wt, we obtain

1

T̄

T̄∑
t=1

E
(‖zt‖2) ≤ 1

T̄
E
(
V (ψ1) − V (ψT̄+1)

)
+

σ2trace (BT
wXBw).

Therefore, letting T̄ → ∞ and using X � 0 lead to J ≤
σ2trace (BT

wXBw), which completes the proof. �
In order to prove Lemma 2, we present a technical lemma,

which along the lines of results of [53] provides us with an
upper bound on the difference between the objective value at
two consecutive iterations.

Lemma 3: Let f ∈ FL
m and κ := L/m. Then, Nesterov’s

accelerated method, with the notation introduced in Section IV,
satisfies

f(xt+2)− f(xt+1) ≤ 1

2

(
N1

[
ψt

ut

]
+

[
σwt

0

])T

×
[
LI I
I 0

](
N1

[
ψt

ut

]
+

[
σwt

0

])

+
1

2

(
N2

[
ψt

ut

])T [−mI I
I 0

](
N2

[
ψt

ut

])
where N1 and N2 are defined in Lemma 2.

Proof: See [58]. �
Proof of Lemma 2: Let us define the positive-semidefinite

function V (ψ) := ψTXψ and let η := [ψT uT ]T . Similar to
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the first part of the proof of Lemma 1, we can use LMI (25) and
inequality (20) to write

‖zt‖2 ≤ V (ψt) − V (ψt+1) + 2σ(ψt)TATX Bw w
t

+ σ2(wt)TBT
w X Bw w

t + 2σ(ut)TBT
u X Bw w

t

− (ηt)TMηt. (36)

From Lemma 3, it follows that

(ηt)TMηt ≥ 2
(
f(xt+2) − f(xt+1)

) − σ2L ‖wt‖2

− 2

[
σwt

0

]T [
LI I
I 0

]
N1η

t. (37)

Now, combining inequalities (36) and (37) yields

‖zt‖2 ≤ V (ψt) − V (ψt+1) + 2σ(ψt)TATX Bw w
t

+ σ2(wt)TBT
w X Bw w

t + 2σ(ut)TBT
u X Bw w

t

− 2 λ2

(
f(xt+2) − f(xt+1)

)
+ λ2σ

2L‖wt‖2

+ 2λ2

[
σwt

0

]T [
LI I
I 0

]
N1η

t. (38)

Since wt is a zero-mean white input with identity covariance
which is independent of ut and xt, taking the expectation of the
last inequality yields

E
(‖zt‖2) ≤ E

(
V (ψt)− V (ψt+1)

)
+ σ2trace (BT

w X Bw)

+ 2λ2 E
(
f(xt+1)− f(xt+2)

)
+ nσ2L λ2

and taking the average over the first T̄ iterations results in

1

T̄

T̄∑
t=1

E
(‖zt‖2) ≤ 1

T̄
E
(
V (ψ1)− V (ψT̄+1)

)

+ σ2trace (BT
w X Bw) +

2λ2

T̄
E
(
f(x2)− f(xT̄+2)

)
+ nσ2L λ2.

Finally, using positive-definiteness of the function V , strong
convexity of the function f , and letting T̄ → ∞, it follows that
J ≤ σ2(nLλ2 + trace (BT

wX Bw)), as required. �
Proof of Theorem 5: Using Theorem (1), it is straightfor-

ward to show that for gradient descent and Nesterov’s method
with the parameters provided in Table I, the function f(x) :=
m
2 ‖x‖2 leads to the largest variance amplification J among the

quadratic objective functions within FL
m. This yields the lower

bounds

qgd = Jgd ≤ J�
gd, qna = Jna ≤ J�

na

with Jgd and Jna corresponding to f(x) = m
2 ‖x‖2. We next

show that Jgd ≤ qgd.
To obtain the best upper bound on Jgd using Lemma 1, we

minimize trace (BT
wXBw) subject to LMI (24), X � 0, and

λ ≥ 0. For gradient descent, if we use representation (22c), then
the negative-definiteness of the (1,1)-block of LMI (24) implies
that

X � 1

αm(2− αm)
I =

κ2

2κ− 1
I. (39)

It is straightforward to show that the pair

X =
κ2

2κ− 1
I, λ =

1− αm

m(2− αm)(L−m)
(40)

is feasible as the LMI (24) becomes[
0 0
0 −1

m2(2κ−1)I

]
� 0.

Thus, X and λ given by (40) provide a solution to LMI (24).
Therefore, inequality (39) is tight, and it provides the best
achievable upper bound

Jgd ≤ trace (BT
wXBw) =

nκ2

2κ− 1
.

For Nesterov’s method, the proof of Jna ≤ 4.08qna is provided
in [58]. �

APPENDIX C
PROOF OF THEOREM 6

Without loss of generality, let σ = 1 and

G :=

n∑
i=1

max{Ĵ(λi), Ĵ(λ
′
i)} (41)

where λi are the eigenvalues of the Hessian of the objective
function f and λ′

i = m+ L− λi is the mirror image of λi with
respect to (m+ L)/2. Since J =

∑
i Ĵ(λi), if λi are symmet-

rically distributed over the interval [m,L] i.e., (λ1, . . . , λn) =
(λ′

n, . . . , λ
′
1), then for any parameters α and β, we have

J ≤ G ≤ 2J. (42)

Equation (42) implies that any bound on G simply carries over
to J within an accuracy of constant factors. Thus, we focus on
G and establish one of its useful properties in the next lemma
that allows us to prove Theorem 6.

Lemma 4: The heavy-ball method with any stabilizing pa-
rameter β satisfies

2(1 + β)

L+m
= argmin

α
ρ(α, β) (43)

where ρ is the rate of linear convergence. Furthermore, if the
Hessian of the quadratic objective function f has a symmetric
spectrum over the interval [λ1, λn] = [m,L], then

2(1 + β)

L+m
= argmin

α
G(α, β).

Proof: See [58]. �
Since gradient descent is obtained from the heavy-ball method

by letting β = 0, from Lemma 4, it immediately follows that
αgd = 2/(L+m) in Table II optimizes both Ggd and the con-
vergence rate ρgd. This fact combined with (42) yields

2 Jgd(α
�
gd(c)) ≥ Ggd(α

�
gd(c)) ≥ Ggd(αgd) ≥ Jgd(αgd)

(44)

whereα�
gd(c) is given by (29b). This completes the proof for gra-

dient descent. For the heavy-ball method, the proof is provided
in [58].
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APPENDIX D
PROOF OF THEOREM 9

The proof uses the explicit expression for the eigenvalues
of torus in (32) to compute the variance amplification J̄ =∑

i �=0 Ĵ(λi) for all three algorithms. Several technical results
that we use in the proof are presented next.

We borrow the following lemma, which provides tight bounds
on the sum of reciprocals of the eigenvalues of a d-dimensional
torus network, from [39, Appendix B].

Lemma 5: The eigenvalues λi of the graph Laplacian of the
d-dimensional torus Td

n0
with n0 � 1 satisfy

∑
0 �=i∈Zd

n0

1

λi
= Θ(B(n0))

where the function B is given by

B(n0) =

{ 1

d− 2
(nd0 − n20), d �= 2

nd0 log n0, d = 2.

We next use Lemma 5 to establish an asymptotic expression
for the variance amplification of the gradient descent algorithm
for a d-dimensional torus.

Lemma 6: For the consensus problem over a d-dimensional
torus Td

n0
withn0 � 1, the performance metric J̄gd correspond-

ing to gradient decent with the stepsizeα = 2/(L+m) satisfies
J̄gd = Θ(B(n0)), where the function B is given in Lemma 5.

Proof: Using the expression for the variance amplification
of gradient descent from Theorem 1, we have

J̄gd =
∑

0 �=i∈Zd
n0

1

αλi(2− αλi)
=

1

2α

∑
0 �=i∈Zd

n0

1

λi
+

1
2
α − λi

=
1

2α

∑
0 �=i∈Zd

n0

1

λi
+

1

λmax + λmin − λi

≈ 1

α

∑
0 �=i∈Zd

n0

1

λi
≈ 2d

∑
0 �=i∈Zd

n0

1

λi
.

The first approximation follows from the facts that the eigen-
values satisfy 0 < λi ≤ λmax + λmin ≈ 4d and that their distri-
bution is asymptotically symmetric with respect to λ = 2d. The
second approximation follows from

α =
2

L +m
=

2

λmax + λmin
≈ 1

2d
.

The bounds for the sum of reciprocals of λi provided in Lemma 5
can now be used to complete the proof. �

For gradient descent, the proof of Theorem 9 follows from di-
viding the asymptotic bounds in Lemma 6 with the total number
of nodes n = nd0. For the heavy-ball method, the result follows
from the proof for gradient descent, the relationship between
variance amplifications of gradient descent and the heavy-ball
method in Theorem 2, and (33). For Nesterov’s method, the
proof is provided in [58].
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